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1 Basic tree variables, forestry summary characteristics 
and biodiversity measures 

 
English: forest mensuration; Welsh: mesuriad coed; German: Waldmesslehre, Dendrometrie; 
Russian: лесная таксация, дендрометрия; Spanish: dendrometría; French: dendrométrie. 
 

Forest mensuration concentrates primarily on the quantitative assessment of trees and 
forest stands at a given point in time during their lives and provides the data required 
for efficient forest management (Laar and Akça, 1997). 

 
Forest mensuration is a branch of biometrics dealing with the methods and 
conventions of measuring and processing tree and forest data. Forest mensuration 
comprises 
 

 measurement and analysis of important individual tree and forest stand 
variables, e.g. diameter at breast height (DBH), height, basal area etc. 
including measures of structural diversity (sections 1.1 and 1.2), 

 tree and forest growth dynamics, 
 sampling and monitoring, 
 basics of forest growth models. 

 
The purpose of section 1.1 is to give a brief introduction to quantitative aspects of 
silviculture and can therefore only be forest mensuration in a nutshell. Silvicultural 
decisions are based on individual tree and forest stand characteristics. They are 
required for interpretation and the formulation of targets. Silvicultural literature 
assumes a good understanding of these basic statistics.  

There are various ways to express structural diversity quantitatively and the 
most basic ones are also introduced in this section. Any science dealing with living 
beings must inevitably reflect the principles of growth dynamics. Sampling and 
monitoring are crucial to silviculture and forest management since they provide 
information on the response of trees to human interventions and other impacts.  

Modern forest growth models are not only tools to produce production 
forecasts but can also be employed as decision support systems which can be used to 
simulate tree growth, human interventions and other biotic and abiotic impacts. Forest 
growth models can inform about the likely success of woodland management 
scenarios and the change in biodiversity as a result of this. Used as simulators they put 
silviculturists into the position of anticipating the lifetime of several tree generations. 

Figure 1.1 illustrates the essential role of forest mensuration in practical 
silviculture. Data measured and collected in the field are rarely in the format required 
for the planning and decision making process and computational data processing is, 
therefore, a key task in silviculture (Puumalainen et al., 1998). 
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Figure 1.1. The computing process within the context of silviculture. Modified from 
Puumalainen et al. (1998). 

 
Because of lack of space instruments which can be employed to measure tree and 
forest stand variables cannot be described here. The same applies to the quantification 
of estimation errors, which is an essential part of data computation (Krebs, 1999). The 
reader is referred to the literature (e.g. Laar and Akça, 1997; Krebs, 1999; Philip, 
1994). Most variables are easy enough to compute in spreadsheet software such as 
MS EXCEL. The author of this book developed the CRANCOD software which can 
compute a wide variety of different tree variables including the more complex spatial 
indices. The CRANCOD software is downloadable on http://tyfcoed.bangor.ac.uk.  
 

1.1 Important individual tree variables 

In a statistical sense forest stands can be interpreted as populations and the individual 
trees that occur in the stand under study as units of the population. A population is an 
aggregate of unit values, where the unit is the object upon which the observation is 
made and the value is the observed aspect of that object. The complete set of values of 
a variable in a given situation is a population. A forest stand can for example serve as 
a study population in which the unit being observed is the individual tree, and the 
value being observed is the diameter at breast height (DBH) (Laar and Akça, 1997).  
 Figure 1.2 illustrates the key individual tree variables in silviculture. 
 
English: age; Welsh: oedran; German: Alter; Russian: возраст; Spanish: edad; French: ???. 
 

The age of a tree is defined as the period of time which has elapsed since germination. 
On trees which produce recognisable annual layers of wood, age can be determined 
by one of the following methods:  
 

 By felling the trees, counting their annual number of rings at stump height and 
adding the estimated period of time the tree requires to reach stump height. 
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 By counting the number of rings on increment cores extracted at breast height 
or lower, with the aid of an increment borer and adding the estimated number 
of years required to reach the point of extraction. 

 By counting the number of internodes (broadleaves) or whorls (conifers), 
provided they are clearly identifiable. 

 

 
 

Figure 1.2. The main important tree variables in silviculture. 
 
The advantages and disadvantages of the different methods are discussed in the 
relevant literature (Laar and Akça, 1997; Philip, 1994). Age is usually given in years 
and frequently used symbols include age, a and t.  
 
English: diameter at breast height, breast height diameter (DBH); Welsh: diamedr ar uchder 
brest (DUB); German: Brusthöhendurchmesser (BHD); Russian: диаметр (дерева, ствола) 
на высоте груди, таксационный диаметр; Spanish: diámetro normal; French: diamètre à 
hauteur de poitrine, diamètre à 1,30 mètre. 
 

In nursery studies, the diameter of a plant is always measured at its base and is 
described as root collar diameter. Tree diameter usually refers to the over bark 
diameter at a fixed distance from the base of the tree. In most countries, the point of 
measurement is located at 1.30m above ground level. The corresponding diameter is 
referred to as diameter at breast height or breast height diameter (DBH). In the 
literature the DBH is also often referred to as “diameter”. Common symbols are DBH 
and d. The diameter at breast height is usually measured in cm or mm. In practice, the 
breast height location is not always easy to determine and the literature gives 
guidelines for critical cases (see Laar and Akça, 1997).  
 
English: basal area; Welsh: arwynebedd gwaelodol; German: Grundfläche, Kreisfläche; 
Russian: площадь (поперечного) сечения; Spanish: área basimétrica; French: surface 
terrière. 
 

Derived from the diameter at breast height is the basal area. The basal area of a tree is 
defined as the cross-sectional area of a stem, usually measured at breast height. The 
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definition assumes the cross-sectional area of a stem to be of circular shape. Basal 
area can be either derived from the tree diameter (eq. 1.1) of from the circumference 
(eq. 1.2). 
 

[1.1]  2
2

2
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where 
ig  basal area [m²] of tree i 

ir  radius [m] of the cross-sectional area of tree i 

id  diameter [m] at breast height of tree i 

 

[1.2]  
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cg =  

where 
ic  circumference [m] of tree i at breast height 

 
Common symbols are g and BA. Basal area is usually measured in m². 
 
English: (total) tree height; Welsh: taldra coeden; German: Baumhöhe; Russian: высота 
дерева; Spanish: altura total del árbol; French: hauteur totale de l'arbre. 
 

(Total) tree height is defined as the perpendicular distance between the top and base 
of a tree. In the case of perfectly straight stems of exactly vertical trees, tree height 
and stem length are identical. Tree height is usually measured in m, a common symbol 
is h.  
 
English: height diameter ratio, slenderness; Welsh: cymhareb uchder/diametr; German: h/d-
Verhältnis, h/d-Wert, Schlankheitsgrad; Russian: стройность; Spanish: relación altura-
diámetro; French: rapport h/d. 
 

 Derived from tree height and diameter is the height diameter ratio or 
slenderness (h/d ratio). The height diameter ratio is an expression of tree morphology 
which results from growth conditions, namely site conditions, competition and 
management (Mitchell, 2000). The more growing space a tree is granted, the longer 
its crown and the smaller its height diameter ratio. It plays an important role as 
indicator variable of individual tree stability of coniferous trees in terms of wind and 
snow hazard. It is defined in formula 1.3. 
 

[1.3]  / i
i

i

hh d
d

=  

where 
/ ih d  height diameter ratio of tree i 
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ih  (total) height [m] of tree i 

id  breast height diameter [m] of tree i 

 
The height diameter ratio has no unit. Burschel and Huss (1997) suggested a system 
of interpreting individual tree stability of coniferous trees (see Table 1.1). The more 
slender trees are, the more they are prone to wind and snow damage. Open grown 
trees (Hasenauer, 1997; Smith et al., 1992), which have grown up in absence of 
competition from other trees throughout their life, by definition have developed the 
highest possible degree of individual tree stability. Forest grown trees usually have 
much larger height diameter ratios than open grown trees (see Figure 1.3). 
Slenderness is also a useful indicator for judging the urgency of thinning operations 
(Abetz and Klädtke, 2002; Pretzsch, 1996). 
 
Table 1.1. Interpreting height diameter ratios (modified from Burschel and Huss, 

1997). 
 

h/d value > 100 80 - 100 < 80 < 45 
Degree of individual tree stability very unstable unstable stable open grown tree 

 
English: open grown tree; Welsh: coeden tir agored; German: Solitär(baum); Russian: дерево, 
выросшее на открытой местности; Spanish: árbol en crecimiento libre; French: arbre 
solitaire, arbre isolé. 
 

 
 

Figure 1.3. Comparison between the morphology of a forest tree (left) and an open-
grown tree (right) of the same age for Scots pine. After Anučin (1982). H/d ratio 
and crown variables are able to quantify these morphological differences. 

 
English: volume; Welsh: cyfaint; German: Volumen; Russian: объём (ствола); Spanish: 
volumen; French: volume. 
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Another individual tree variable derived from diameter and height is volume. Volume 
usually only refers to the volume of stems, frequently it is restricted to so-called 
merchantable or commercial volume, i.e. from the bottom up to a certain top 
diameter, e.g. 7cm. The exact volume of trees can only be determined by water 
displacement but this method is time consuming and only used in special 
circumstances. Tree volume is therefore estimated from diameter and height/length 
measurements. The basic idea is to express volume as a function of diameter and 
height or more precisely as a function of basal area and height. This comes from the 
idea that the stem of a tree can be understood as a cylinder. However, with increasing 
height towards the top there is an increasing deviation of a tree’s stem from the shape 
of an ideal cylinder. This morphological characteristic of trees is referred to as taper 
and requires a correction factor introduced to the volume formula of a cylinder. This 
correction factor is referred to as the form factor and there are several methods of 
defining this (Laar and Akça, 1997; Philip, 1994).  
 
English: taper, form factor; Welsh: tapr, ffactor ffurf; German: Abholzigkeit, Formzahl; 
Russian: сбег, сбежистость (ствола дерева), видовое число; Spanish: factor de forma, 
conicidad; French: décroissance, coefficient de forme. 
 

Eq. 1.4 gives the full volume formula for a tree. 
 

[1.4]  iiiiiii fhgfhdv ⋅⋅=⋅⋅⋅⋅= π2

4
1  

where 
ih  (total) height [m] of tree i 

id  breast height diameter [m] of tree i 

if  form factor of tree i 

 
In recent years a number of form factor and volume functions have been developed to 
estimate volume directly from diameter at breast height and height. Tree volume is 
usually measured in m³, a common symbol is v. 
 
English: crown; Welsh: brig(dyfiant); German: Krone; Russian: крона; Spanish: copa; 
French: couronne, houppier. 
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Figure 2.4. Crown 
variables. 

Figure 1.4 illustrates the most important crown variables. 
The crown radius is the distance between the stem centre 
and the outer edge of the crown. Tree crowns can be very 
eccentric, for this reason the crown radius is usually 
determined as the arithmetic mean of 4-8 radius 
measurements in different directions. Crown width is crown 
radius multilpied by two. For height to base of crown there 
are various definitions in the literature. A sensible definition 
is “the first living branch (broadleaves), the first whorl with 
at least three living branches (conifers) from the base of the 
tree that is contiguous with the rest of the crown”. 

Based on these crown variables a number of indices or ratios have been developed 
which play important roles in silvicultural research (see Table 1.2).  
 
Table 1.2. Crown indices and ratios (Laar and Akça, 1997; Philip, 1994). 
 

Eq. # Name Ratio Other name 

[2.5] Crown ratio 
crown length
tree height c/h ratio 

[2.6] Crown form index 
crown length
crown width - 

[2.7] Linear crown index 
crown width

DBH
k/d ratio 

[2.8] Crown spread ratio 
crown width
tree height - 

 
The crown ratio is often used to assess individual tree stability of coniferous trees in a 
similar way as the h/d ratio, although the former is a better indicator of resistance to 
stem breakage while the latter indicates resistance to windthrow. An interpretation 
guide for the c/h ratio is given in Table 1.3. 
 
Table 1.3. Interpreting crown ratios (modified from Schütz, 2001). 
 

c/h value ≤ 0.30 0.30 < c/h ≤ 0.50 > 50 ≥ 0.62 
Degree of individual tree stability very unstable unstable stable open grown tree

 
Both c/h and h/d ratios are often used to assess thinning requirements in managed 
forests (Pretzsch, 1996). 
 
English: crown classes; Welsh: dosbarthiadau brigdyfiant; German: Baumklassen, Kraftsche 
(Baum, Stamm)Klassen; Russian: классы роста; Spanish: clases de copa, claes sociológicas; 
French: classes d'arbres, classes de grosseurs. 
 

Classifying trees according to “social” or crown classes goes as far back as 1844 
(Rozsnyay, 1979). Crown classes were originally devised for homogeneous even-aged 
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forests and have traditionally been used to define thinning types and intensities. 
Crown classes can be helpful tools to stratify the trees of a forest for special analyses. 
Trees are classified according to their total heights, i. e. their relative position in the 
forest stand, and their crown morphology. This visual assessment uses correlations 
between crown size and shape and competitive status of trees in a forest stand. For 
practical and scientific use it is also important to distinguish between light demanding 
and shade tolerant tree species. For example a mixed broadleaved forest stand with 
light demanding tree species in the overstorey can have overtopped beech, hornbeam 
and lime trees with well developed crowns (5a). There are different numbers of 
classes, names and coding systems in the literature (Köstler, 1956; Assmann, 1970; 
Burschel and Huss, 1997; Röhrig et al., 2006; Smith et al., 1997). Anglo-American 
sources often use letters (D, CD, SD, S) while numbers are common on the European 
continent (1-5). Figure 1.5 illustrates the system by Kraft. 
 

1. Predominant trees: Most dominant trees of a forest stand with exceptionally strongly 
developed crowns often above the level of the main canopy.  

2. Dominant trees: Dominant trees forming the main canopy and having 
comparatively well developed crowns. 

3. Co-dominant trees: Crowns extend into main canopy, but are comparatively weakly 
developed and narrow. Crowns start to degenerate. Lower limit 
of dominant trees. 

4. Dominated trees: Dominated trees with heavily squeezed or one-sided crowns 
(flag-shaped). 

 a.  Free crowns tops in the middle storey. 
 b.  Partly overtopped crowns in the understorey with the 

beginning of crown dieback. 
5. Suppressed trees: Crowns completely overtopped. 
    a.  but surviving (shade tolerant species only). 
    b.  dying or dead. 

 
 
English: overstorey, middle storey, understorey; Welsh: troshaen, haen ganol, isdyfiant; 
German: Ober-, Mittelschicht-, Unterschicht (-stand); Russian: верхний ярус, средний ярус, 
нижний ярус; Spanish: piso superior, piso intermedio, subpiso; French: strate dominante, 
strate intermédiaire, strate inférieure. 
 

Assmann (1970) associates classes 1-3 with the overstorey, class 4 with the middle 
and class 5 with the understorey. Assmann (1970) also suggested a quantitative 
definition of the three main canopy strata in a forest (see Table 1.4). 
 
Table 1.4. The three main canopy strata according to Assmann (1970). 
 

Canopy stratum Height range in % of 
maximum stand height

Overstorey (= upper 
storey= > 80 

Mid(dle) storey 50 – 80 
Understorey 
(=lower storey) < 50 
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Figure 1.5. Crown classes according to Kraft (1884). 
 
Often a more simplified system is used (Röhrig et al., 2006). This has, of course, 
limitations in more complex woodlands involving tree species with very different 
light demands. 
 

Dominant (D, 1): Most dominant trees of a forest stand with crowns above the 
level of the main canopy facing hardly any lateral competition.  

Co-dominant (CD, 2): Dominant trees forming the main canopy with little lateral 
competition. 

Sub-dominant (SD, 3): Crowns extend into main canopy, but face strong lateral 
competition. Crowns are therefore smaller and irregular in 
shape. 

Suppressed (S, 4): Trees with overtopped crowns under the canopy of the main 
canopy. 

 
Because of practical difficulties in deciding which trees in a forest stand belong to 
which crown class and the degree of subjectivity of judgements the original system by 
Kraft has been refined and modified various times. Kraft’s system has often been 
criticised because timber quality and other tree characteristics are not reflected in it. 
An option to refine Kraft’s original crown class system is to stratify trees according to 
a number of height zones and to classify the trees whose crown tips fall into one or 
another of the height strata separately for each stratum (Oliver and Larson, 1996). 
 Another tree stratification system developed from modern tending methods of 
selective thinnings as they are useful for the frame tree management. Rittershofer 
(1999) gives such a functional tree stratification system for commercial woodland 
management. 
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Frame trees (F)1: Trees selected for their outstanding vitality, stem quality, 

productivity, stability and crown morphology. Usually not more 
than 100-200 trees/ha. 

Matrix trees (M): All non-frame trees. 
 Hazard trees (H)2: Diseased and damaged trees, trees potentially being a threat to 

frame trees: 
  Wolf trees (W): Dominant, very competitive trees with poor stem quality. 
  Rubbing trees (R): Sub-dominant and suppressed trees rubbing frame trees with 

larger branches or parts of their crown. 
  Whipping trees (Wh): Sub- or co-dominant trees with slender stems and very small 

brush-like crowns. Whipping trees tend to move heavily in 
windy conditions and by doing so can seriously damage the 
crowns of their neighbours. 

  Competitors (C): Neighbours of frame trees that potentially have a negative effect 
on the growth and development of frame trees. 

 Nurse trees (N): Trees of the over-, mid- and understorey that are beneficial to 
frame trees, e.g. by providing shelter against climatic extremes, 
be preventing epicormic growth or the growth of invasive 
ground vegetation (bramble, bracken). 

 Indifferent trees (I): Dominant or sub-dominant trees at sufficient distance to the 
frame trees and no effect on them. Such trees can potentially 
replace damaged or diseased frame trees. 

 
A similar system is also given in Assmann (1970) where it is referred to as the Danish 
tree classification. Such systems are helpful for modern individual tree silviculture 
where trees need to be identified for thinning and release in the field. Quick decisions 
need to made in such cases when marking trees for these two major groups. A 
classification system such as the one by Rittershofer may facilitate the decision 
making process. Figure 1.6 illustrates Rittershofer’s frame tree based classification 
system. 

                                                 
1 Köstler (1956) describes desirable tree characteristics in a commercial scenario as trees “with stems 
running right through with one definitely predominant axis. Such trees should be straight, erect and of 
circular cross-section. The crowns of frame trees should have a dominant leader. There should be a 
sufficient branch-free length of high-quality timber. The crown should be finely branched and should 
display a symmetrical structure, as with a symmetrical crown the stem grows concentrically.” 
2 Other unfavourable tree characteristics in a commercial context include deeply forked stems, heavy 
and many branches, epicormic shoots, bent-over stems, cracks, spiral grain, broken leaders/tops, 
harvesting and extraction (bark abrasion) damage, insufficient root spread and anchorage in the soil, 
swellings, canker and other diseases. 
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Figure 1.6. Crown classes according to Rittershofer (1999) and result of a selective 
thinning in favour of frame trees. 

 
Simple modifications of this classification system could lead to an approach with 
primarily ecological objectives where valuable habitat and rare species trees are 
appointed as frame trees. A wide range of other tree classification systems has been 
developed (Röhrig et al., 2006). 

The following indices are measures to quantify the three aspects of structural 
tree diversity, the diversity of tree positions, tree species diversity and the diversity of 
tree dimensions (Pommerening, 2002; Aguirre et al., 2003). For calculating these 
indices it is necessary to identify the nearest neighbours of the tree under study, 
generally termed the reference tree and because this gives a spatial dimension the 
following indices are referred to as being spatially explicit. The number of nearest 
neighbours, n, can be varied and needs to be determined according to the specific 
forest structure investigated (Pommerening, 2006), but often n = 3 and n = 4 are used 
(see Figure 1.7). 
 

 
 

Figure 1.7. Example of a structural group involving 4 neighbour trees. This structural 
group of reference tree and neighbouring trees is the computational unit for the 
following indices (Pommerening, 2006).  
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Eq. 1.9 and 1.10 are indices of positional diversity. Eq. 1.9 is known as the uniform 
angle index (Gadow et al., 1998; Hui and Gadow, 2002). αj is the angle pointing away 
from the reference tree i to the neighbours j (j = 1 … n). If αj exceeds 180°, then αj = 
360° - αj. Each angle αj is compared to a standard angle α0 calculated as 

1
360

0 +
°

=
n

α . 

 

[1.9]  
1

1 n

i j
j

W w
n =

= ∑   
⎩
⎨
⎧ <

=
otherwise,

,
w j

j 0

1 0αα
  [ ]10,Wi ∈  

 
If aj < a0 a value of 1 is allocated to the indicator variable wj, otherwise 0. The 
indicator variable wj is added up for all n neighbours. There are n + 1 possible values 
Wi can assume (see Figure 1.7). Low values of Wi correspond to a regular arrangement 
of neighbours around tree i, high values signify a clustered arrangement. Values 
around 0.5 reflect a random arrangement. 
 A similar index is the mean directional index (Corral-Rivas et al., 2006), 
which calculates the length of the sum of unit vectors between a tree i and its nearest 
neighbours. αij is the angle subtended at the reference tree i by pairs of neighbour 
trees j and moving clockwise around the reference tree. 

[1.10]  
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If the neighbouring trees of tree i are located in a perfect lattice square, Ri = 0. The 
more clustered the pattern of neighbours is the higher the Ri value. The expected value 
for a random configuration can be approximated with ( ) π⋅= n.RE i 50 . 

 The mingling index (Füldner, 1995; Aguirre et al., 2003) describes the species 
pattern around the reference tree. It belongs to the group of indices describing species 
diversity. Mi gives the proportion of the n nearest neighbours j of tree i which do not 
belong to the same species as tree i (see Figure 1.8). 
 

[1.11]  
1

1 n

i j
j

M m
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⎩
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otherwise,
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Figure 1.8. Illustration of the mingling index for 4n =  neighbours. The neighbours 
are numbered according to increasing distance from the reference tree 
(Pommerening and Stoyan, 2006). The dominance and uniform angle index work 
in a similar way. 

 
The larger the mingling variable Mi, the more the different tree species are 
intermingled. Small values indicate large groups of only one tree species and therefore 
segregation. 
 The following indices describe the diversity of tree dimensions. The 
differentiation index (Füldner, 1995; Pommerening, 2002) can be applied to any 
dimensional variable, e.g. to tree diameters and heights as in eq. 1.12 and compares 
the reference tree i to one of its neighbours j. 
The value of TDi or THi increases with increasing size difference between 
neighbouring trees. A value of 0 means that neighbouring trees have an equal size. 
 

[1.12]  
)(
)(

1
ji

ji
i DBH,DBHmax

DBH,DBHmin
TD −=  

)(
)(

1
ji

ji
i h,hmax

h,hmin
TH −=  [ ]10,TH,TD ii ∈  

 
In a similar way as the differentiation the dominance index (Hui et al., 1998; Aguirre 
et al., 2003) can use any tree size variable, e.g. tree diameters or total heights. The 
indicator variable uj is 1 if diameter or height of tree i exceeds that of the 
neighbouring tree j, otherwise 0.  
 

[1.13]  
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j
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Johann (1982) developed the A-thinning index (eq. 1.14) which defines a 

critical distance cdij between tree i and its n nearest neighbours depending on the 
thinning intensity parameter A. Any neighbouring tree j being located closer to tree i 
than the critical distance cdij needs to be removed. Apart from the thinning intensity 
parameter A the index uses the height diameter ratio of tree i and the diameter of the 
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neighbouring tree j. The A-thinning index is sensitive to the h/d ratio of tree i: Trees 
with a larger h/d ratio are relatively more heavily released than those with a smaller 
h/d ratio. The values of A can range from 4 to 8 with decreasing thinning intensity. 
Johann (1982) recommended values of 4, 5 and 6 for even-aged pure Norway spruce 
forests which he considered to be synonymous with heavy, moderate and light release. 
A-values of 4 and 6 are frequently used values in thinning experiments (Hasenauer et 
al., 1996; Pretzsch, 2002).  
 

[1.14]  ji
ij

i

DBHhcd
A DBH

= ⋅  

 
Like competition indices (e.g. Biging and Dobbertin, 1992; Moravie et al., 1999; 
Bauer et al., 2004; Paulo et al., 2002) the A-thinning index attempts to identify 
competitors of trees and to put thinning intensity on a quantitative basis. Hasenauer et 
al. (1996) have demonstrated how this index can be used as part of thinning event 
inventories to quantify tree competition before and after thinning. A can also be 
interpreted as a proportionality factor between the height of tree i and the critical 
distance. Pretzsch (2002) points out that this proportinal relationship does not hold for 
young forest stands with small diameters and older stands with larger diameters. In 
the first case thinnings turn out to be too weak and the latter they become too heavy. 
His recommendation is to modify the formula cdij in the following way 
 

[1.15]  
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,
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The A-thinning index was originally developed for monospecies even-aged forests. 
For mixed species woodlands with different light requirements different A-values can 
be applied to each species or species group.  
 The A-thinning index can be applied differently by means of the re-arranged 
formula 1.16. 
 

[1.16]  ji
j

ij i

DBHhA
dist DBH

= ⋅  
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For all j = 1..n neighbours of tree i the individual Aj-value is calculated according to 
eq. 1.16 where distij is the observed distance between tree i and neighbour j. The 
larger is Aj the stronger the competition pressure of tree j on tree i. The n neighbours 
can then be sorted from high to low values according to their Aj-values. A decision 
can be made to remove only one, two or three competitors from the top of this list 
(Pretzsch, 2002). The A-thinning index is often used in individual tree growth 
simulators to quantify competition and to simulate selective thinnings (Hanewinkel 
and Pretzsch, 2000; Pretzsch et al., 2002; Hasenauer, 2006). The index also has a high 
educational value when developing practical experience with selective thinnings. 
 

1.2 Important forest stand or population variables 

Forest stand variables are summary statistics that attempt to summarise tree data in a 
useful informative way. Summary statistics provide a numeric overview of tree and 
forest data and aim to describe them by numbers, functions or diagrams. They usually 
comprise means, standard deviation, minima, maxima, range, coefficent of variation 
and also frequency distributions (Porkress, 2004). Forest science and silviculture have 
developed a number of very specific characteristics. The most important ones are 
briefly discussed in this section. In mixed species forests it is very useful to describe 
each species separately. 
 The most traditional variable are basal area (G), trees or stems per hectare 
(SPH) and the mean squared diameter (dg).  
 
English: trees/stems per hectare; Welsh: cyffion yr hectar; German: Stammzahl pro Hektar; 
Russian: число деревьев/стволов на 1 га; Spanish: pies por hectárea; French: nombre de 
tiges par hectare. 
 

The basal area G of a forest stand is defined as the sum of the basal area of all 
individual trees related to one hectare (see eq. 1.17). 
 

[1.17]  1

N

i
i

g
G

A
==
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where 
ig  basal area of tree i in m² 

N number of trees in a forest stand 
A  area of the sample plot(s) in ha 
 
In long-term silvicultural research the mean basal area over a period (Assmann, 
1970) is defined as the mean of the basal area between two thinnings weighted by the 
length of the increment period. 
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where 
bG  basal area at the beginning of an increment period immediately after a 

thinning 
eG  basal area at the end of an increment period immediately before a thinning 

m number of years of an increment period, number of years between two 
thinnings 

 
Stems per hectare (SPH) is simply 
 

[1.18]  NSPH
A

=  

 
Care has to be taken when trees are measured in sample plots with variable plot size 
A. In that case each tree has its one area variable Ai.  
 Tree and basal area per hectare are often used to describe the density of a 
forest stand though Trees per hectare is not always an appropriate measure of site 
occupancy, since trees can be very different in size. Basal area is a useful measure of 
stocking level as it incorporates both size and number of trees, thus indicating how 
completely a piece of land is occupied by trees (Gadow and Bredenkamp, 1992). 
Stand density is a measure of the number of trees on a given piece of land whereas 
stocking refers to the degree of site occupancy.  
 
English: stocking (degree, grade); Welsh: stocio; German: Bestockungsgrad; Russian: 
полнота древостоя; Spanish: densidad, existencias; French: degré de boisement. 
 

Stocking degrees SD are variables derived from basal area and have the general 
formula 
 

[1.19]  obs

norm

GSD
G

=  

where 
obsG  observed forest stand basal area in m² 

normG  “normal” forest stand basal area in m² derived either from yield tables or from 
an unmanaged control plot 

 
While in the past normal basal area was derived from yield tables it is now 
increasingly derived from unmanaged control plots on the same site type and with the 
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same species composition. From such plots the norm is derived as the biologically 
maximum possible basal area. The corresponding stocking degree, which is often 
referred to as natural stocking degree, indicates the degree to which the maximum 
possible basal area has been reduced by management activities. This information is 
very relevant to silvicultural objectives. Forest stands not at the optimal stocking do 
not make the best use of the site and increment decreases. This can happen in both 
over-stocked (SD > 1) and under-stocked (SD < 1) forest stands. Stocking degrees are 
also strongly correlated with light levels available for natural regeneration and ground 
vegetation. The regulation of stand density is therefore an important function of 
woodland management (Gadow and Bredenkamp, 1992). Sterba (1975, 1981, 1987) 
developed methods to estimate the maximum possible basal area for a given site when 
this information is not available from long-term research plots.  
 There is an important relationship between stand density and average tree size 
on any given site and species. Populations of even-aged trees growing at high 
densities are subject to density-dependent mortality or self-thinning. For any given 
mean diameter there is a limit to the number of live trees per hectare that may coexist 
in even-aged stands. Ecologically this limiting relationship can be interpreted as the 
carrying capacity of any given site (Kimmins, 1997). The mean diameter in an 
unthinned plantation of a given initial density will increase until the limiting 
relationship is reached. Thereafter, further growth will be accompanied by mortality 
(Gadow and Bredenkamp, 1992). Among the first to describe this phenomenon was 
Reineke (1933). Yoda et al. (1963) developed –3/2 power law, which is based on the 
same idea (Pretzsch and Biber, 2005). Figure 1.9 illustrates the limiting relationship 
for two yield classes of Sitka spruce in Britain. 
 

SPH 24 = 43103dg 24
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R 2  = 0.8658
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Figure 2.9. The limiting relationship for Sitka spruce (yield classes 12 and 24) in 
Britain. Rectangular, unfilled dots and dotted line – yield class 12, circular filled 
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dots and continuous line- yield class 24. Derived by the author from data of 
unthinned monitoring plots used to establish the British yield table system 
(Hamilton and Christie, 1973). 

 
The relationship between stand density and average tree size is very important for 
woodland managers who wish to optimise thinning regimes. A large basal area is 
desirable for pulpwood and wood fuel stands while stands where sawtimber 
production is the prime objective large diameters are more important. Variations of 
this relationship have frequently been used in the past to produce silvicultural guide 
curves. A number of other density and stocking measures such as the stand density 
index (SDI) and the relative spacing have been derived from this relationship (Gadow 
and Bredenkamp, 1992; Laar and Akça, 1997). 
 
English: mean squared diameter, quadratic mean diameter; Welsh: diamedr cymedrig 
cwadratig; German: Durchmesser des Grundflächenmittelstamms; Russian: средний 
диаметр, соответствующий площади сечения среднего дерева; Spanish: diámetro medio 
cuadrático; French: diamètre de l'arbre de surface terrière moyenne. 
 

 There is a number of different mean diameters in forest science. The most 
commonly used concept is that of the mean squared diameter or quadratic mean 
diameter dg (see eq. 1.20).  
 

[1.20]  
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where 
id  breast height diameter [cm] of tree i 

ig  basal area [m²] of tree i 

 
The mean squared diameter represents the tree with the mean basal area. The mean 
squared diameter forms an arithmetic system with trees per hectare and basal area, so 
that any of these three variables can be calculated when two of them are known (see 
eq. 1.21). 
 

[1.21]  2
40000

dg
GSPH ⋅=

π
; 

40000
2 π
⋅⋅= dgSPHG ; 
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Gd g ⋅=

π
40000  

 
In the British yield tables the mean arithmetic diameter is used, which is normally 
restricted to investigations of seedling and sapling populations only. Other population 
diameters include the central basal area diameter and the top height diameter which 
will be discussed later. 
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[1.22]  
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Volume per hectare is derived in a similar way to trees and basal area per hectare (eq. 
1.22). Volume is often used as a density measure in older forests and plays an 
important role in silvicultural management guidelines. Forest stand volume can also 
be estimated by multiplying the volume corresponding with the quadratic mean 
diameter with SPH (eq. 1.23). 
[1.23]  SPHvV̂ g ⋅=  

where 
gv  volume of the quadratic mean diameter tree 

V̂  estimated forest stand volume 
 
Eq. 1.23 again emphasises the significance of the quadratic mean diameter dg. 
 
English: diameter distribution; Welsh: dosbarthiad diamedrau; German: 
Durchmesserverteilung; Russian: распределение деревьев по ступеням толщины; Spanish: 
distribución diamétrica; French: répartition des diamètres. 
 

Naturally diameter distributions offer more information than population 
diameters. The shape of diameter distributions is related to the structure of forest 
stands. Empirical frequency distributions are commonly computed as diagrams with 
equal class intervals in which the vertical scale is frequency. With diameter 
distributions equidistant class widths are common. The choice of the ideal class width 
is a serious statistical problem and various formulae have been suggested to optimize 
class width. In forest science and practice 1, 2, 4, 5 and 10cm classes are common. 
Most frequently, however, 1 and 4cm classes are used. 

 

1cm-diameter classes 

… 

Class 8: 7.5cm ≤ DBHi < 8.5cm [7.5, 8.5) 

Class 9: 8.5cm ≤ DBHi < 9.5cm [8.5, 9.5) 

… 

4cm-diameter classes 

… 

Class 12: 10.0cm ≤ DBHi < 14.0cm [10.0, 14.0) 

Class 16: 14.0cm ≤ DBHi < 18.0cm [14.0, 18.0) 

… 
 
The number of each diameter class corresponds with its mid-point diameter. The 
choice of class width should be made dependent on the objectives of the analysis. 
Figure 1.10 illustrates the case of two different diameter classes applied to a mixed 
species woodland at Clocaenog forest. 
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Figure 1.10. Diameter distributions from a mixed Sitka spruce – lodgepole pine forest 
stand at Clocaenog forest (North Wales). Left: 1cm-classes, right: 4cm-classes. 

 
The comparison intuitively shows that 4cm-classes are more appropriate to get a 
better impression of the diameter structure.  

An efficient way to compute equidistant frequency distributions is to use eq. 
1.24. Each tree diameter is divided by the class width and the result is converted to an 
integer number. This is the number of the diameter class the tree belongs to. Finally 
the number of trees in each class can be counted. 
 

[1.24]  ⎥
⎦

⎤
⎢
⎣

⎡
=

widthclass
dintclass  

 
Another way of further summarizing diameter distributions is to fit models to their 
data. The most common models include Weibull, beta and gamma distributions (Laar 
and Akça, 1997; Philip, 1994). The parameters of such distributions functions can be 
used as structural indices. 
 
English: (stand) height curve, height diameter curve; Welsh: cromlin uchder/diamedr; 
German: (Bestandes)höhenkurve; Russian: кривая высот (деревьев); Spanish: curva altura-
diámetro; French: courbe de répartition des hauteurs. 
 

There is a non-linear statistical relationship between diameters and heights of a 
tree population, which has underlying physical and physiological causes. The nature 
of the relationship is evident when depicting measured tree heights over the 
corresponding diameters in a diagram. As diameter increases tree height increases at a 
lower rate until height curve finally levels off (in mathematical terms the height curve 
is approaching an asymptote). As it is more complicated to take height measurements 
than diameter measurements, it is quite common to measure heights on a sample basis 
only. A general recommendation is to sample between 30-40 tree heights across the 
range of diameters per species per population (e.g. a forest stand). Especially for the 
assessment of interspecific competition, volume and for research purposes the 
height/diameter relationship of a tree population should be analysed separately for 
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each species. A number of models have been developed for the quantitative 
description of the height/diameter relationships. The most important ones are listed in 
Table 1.5. 
Table 1.5. Selected height curve functions. a0 and a1 are regression coefficients. d – 

diameter at breast height [cm], h – (total) tree height [m], ln – natural logarithm, 
e – base of the natural logarithm. 

 

Eq. # Name Main version Linear version 
[1.25] Logarithmic dlnaah ⋅+= 10  dlnaah ⋅+= 10  
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[1.27] Michailoff (1943) d
a

ea.h
1

031
−

⋅+=  ( )
d

aaln.hln 131 10 ⋅+=−  

[1.28] 
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By transforming height curve equations to a linear form the regression coefficients 
can be calculated through linear regression. Height curves are useful tools when 
assessing interspecific competition and the vertical structure of a forest (see Figure 
1.12). Height curve functions help to estimate total tree heights for trees where only 
diameter information is available. Height curves are also the basis for the estimation 
of forest population heights, mean stand heights, top heights and volume. Figure 1.11 
illustrates the height diameter functions of Table 1.5. 
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Figure 1.11. Height diameter curves of Table 1.4 for a mixed Sitka spruce – lodgepole 
pine forest stand at Clocaenog forest (North Wales). 

The logarithmic function is one of simplest height functions but quite inflexible and 
therefore especially unsuitable in diverse forests. The Oliveira function is similar but 
more flexible than the logarithmic function. Petterson and Michailoff functions have 
turning points which allow a better adaptation to diverse, irregular forests. 
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 Figure 1.12 illustrates the use of stand height curves to assess interspecific 
competition. The light demanding lodgepole pine is overtopped by Sitka spruce. 
Lodgepole pine cannot survive if intimately mixed with Sitka spruce. Only a spatial 
segregation of the two species provides a chance for lodgepole pine. In fact in the 
forest under study lodgepole pine only occurs on dry outcrops where the species had a 
long-term advantage over Sitka spruce. The graphs also show that the forest 
potentially has two canopy layers. 
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Figure 1.12. Height diameter curves of Sitka spruce (black) and lodgepole pine 
(white, grey) for a mixed Sitka spruce – lodgepole pine forest stand at Clocaenog 
forest (North Wales). 

 
Population or forest stand height is a useful response variable in silvicultural trials and 
tree breeding experiments. Unlike tree diameters it reacts more to site condition than 
to management induced competition.  

Like the arithmetic mean diameter the arithmetic mean height is heavily 
affected by thinning operations. It is therefore only applied in biological 
investigations involving very young plantations (fertilizer, provenance experiments).  

Usually population heights are derived from height curves by inputting 
population diameters into the height equation. The mean height of a tree population is 
often used to estimate the volume of the quadratic mean diameter tree and then the 
volume her hectare. Mean heights and age were once used as input variables for yield 
tables but in most modern yield tables mean heights have been replaced by top heights 
which are less susceptible to thinning effects.  
 
English: top height, dominant height; Welsh: uchder brig; German: Oberhöhe, Spitzenhöhe; 
Russian: доминирующая высота; Spanish: altura dominante; French: hauteur maximale, 
hauteur dominante. 
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Top and mean heights are derived from the top height diameter or d100 (defined as the 
mean squared diameter of the 100 largest trees/ha) and the mean squared diameter dg, 
respectively. Figure 1.13 shows the estimation procedure graphically. 

 

0
5

10
15
20
25
30
35

0 20 40 60 80

DBH [cm]

Height [m]
Michailoff

d 100  = 43.8cm

h 100  = 26.3m

d g  = 34.8cm

h g  = 24.3m

 
 

Figure 1.13. Illustration of the estimation of mean and top height from the mean 
squared diameter, the top height diameter and the height curve equation. If 
sufficient species specific measurements are available population diameters and 
heights can also be estimated species specifically. 

 
The ratios of hg/dg and h100/d100 are often used as population values of the h/d ratio. In 
conifers the latter is especially important since it represents the h/d ratio of the most 
dominant trees, which are the trees most exposed to wind in a forest stand. In Britain, 
Forest Research has adopted a procedure of estimating top heights, which is different 
from the international standard. Other authors have pointed out, that top or dominant 
height diameters can be more precisely defined statistically as when calculated as the 
mean squared diameter of a relative number of trees. Weise for example defined the 
top height diameter as the mean squared diameter of the 20% largest trees, which 
corresponds approximately with d90%, i.e. the 90% percentile of the cumulative 
diameter distribution. There is some evidence that the mean squared diameter of the 
10% biggest trees, corresponding with the 95% percentile of the cumulative diameter 
distribution, d95%, is an even better definition of the top height diameter (Wenk et al., 
1990). In some text books top heights are referred to as dominant heights.  

Top height is an important indicator of site quality. The site index, for 
example, is defined as the top height attained at some specified reference age, e.g. 30 
years. For this purpose it is necessary to establish the top height development over age 
or alternatively to sample top height exactly at the time of the reference age. Figure 
1.14 shows the top height assessment for three Welsh long-term sample plots. 
According to this Glasfynydd forest exhibits the best top height development and 
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highest site index signifying the best site conditions for Sitka spruce of all three 
locations. 
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Figure 1.14. The site index at the age of 30 years (SI30) of three Sitka spruce forests in 
Wales. THT – top height, BB2068 - Glasfynydd Forest, BN2021 - Coed y Brenin, 
CC2185 – Clocaenog forest. 

 
Individual tree structural indices, as introduced in the previous section, can also be 

aggregated to give summary characteristics. They can be expressed as arithmetic 
mean values and empirical frequency distributions. Spatial summary characteristics 
using data from finite sample plots often require edge corrections to provide unbiased 
estimation (Pommerening and Stoyan, 2006). The mean uniform angle index is 
therefore calculated as 
 

[1.29]  ∑
=

=
N

i
iW

N
W

1

1  

where 
N number of trees in the forest 
Wi uniform angle index of tree i 
 
and the mean of the mean directional index, the mean mingling index, the mean 
differentiation and the mean dominance index are calculated in a similar way. The 
line above the index symbol symbolises the fact that it is an arithmetic mean.  
 More informative are the corresponding index distributions with individual 
trees put into classes. For the uniform angle, mean directional, mingling and 
dominance index there are always as many classes as there are discrete individual tree 
index values, i.e. n + 1 with n being the number of neighbours. For example as shown 
in Figure 1.7 Mi, can take 5 different values with n = 4: 0.00, 0.25, 0.50, 0.75 and 
1.00. In order to construct a distribution all trees are sorted into their respective class 
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according to their Mi values. Figure 1.15 illustrates the mingling distribution for the 
species mixed woodland Pen yr Allt Ganol in Gwydyr forest (North Wales). 
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Figure 1.15. Mingling distribution (left) of Scots pine (SP) as the main species of the 
overstorey and of birch (BI) as the main species of the understorey. The 
corresponding mean arithmetic values on the right. 

 
The mingling distributions clearly show that Scots pine and birch have an opposite 
mingling behaviour. While Scots pine trees are mostly surrounded by trees of another 
species birch trees tend to be arranged in clusters. Similar graphs can be produced for 
the other neighbourhood indices. Differentiation distributions are constructed 
following the following principle 
 

Class 1: Small differentiation: comprises the classes 0.0 ≤ TDi, THi < 0.3. The tree with the 
smallest DBH/total height has 70 % or more of the neighbouring tree’s size. 

Class 2: Medium differentiation: comprises the classes 0.3 ≤ TDi, THi < 0.5. The tree with the 
smallest DBH/total height has 50 - 70 % of the neighbouring tree’s size. 

Class 3: Large differentiation: comprises the classes 0.5 ≤ TDi, THi < 0.7. The tree with the 
smallest DBH/total height has 30 - 50 % of the neighbouring tree’s size. 

Class 4: Very large differentiation: comprises the classes 0.7 ≤ TDi, THi < 1.0. The tree with 
the smallest DBH/total height has less than 30 % of the neighbouring tree’s size. 

 
Figure 1.16 illustrates the diameter differentiation distributions for Pen yr Allt Ganol. 
As Scots pine trees with large diameters are often surrounded by regeneration trees 
with small diameters the diameter differentiation of Scots pine tends to be very large. 
Birch trees on the other hand are often surrounded by other birch trees or other 
regeneration trees with small diameters so that the diameter differentiation of birch 
tends to be small. 
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Figure 1.16. Diameter differentiation distribution (left) of Scots pine (SP) as the main 
species of the overstorey and of birch (BI) as the main species of the understorey. 
The corresponding mean arithmetic values on the right. 

 
Gadow and Hui (2002) have suggested using the classes of the dominance distribution 
as spatial variants of relative crown classes. Relative in this context means that trees 
are not classified according to overall canopy layers as in Kraft’s crown classes but 
rather classified individually in the context of their nearest neighbours. 
 
Table 1.5. Interpretation of the dominance index in the case of n = 4 neighbours. 
 

Ui Description Relative crown class 
0.00 4 of 4 neighbours smaller than reference tree very suppressed 
0.25 3 of 4 neighbours smaller than reference tree moderately suppressed 
0.50 2 of 4 neighbours smaller than reference tree co-dominant 
0.75 1 of 4 neighbours smaller than reference tree dominant 
1.00 0 of 4 neighbours smaller than reference tree strongly dominant 

 
Figure 1.17 illustrates the significance of “relative” crown classes. The majority of 
Scots pine trees are dominant in the context of their neighbours since they are always 
surrounded by much smaller regeneration trees. Birch trees occur in clusters, some of 
their neighbours are overstorey Scots pine trees, some are smaller or larger birch trees 
or other broadleaves. As a result birch trees are almost evenly distributed over the five 
dominance classes. Kraft’s crown classes, however, would classify almost all birch 
trees as 5a or overtopped trees. 
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Figure 1.17. Dominance distribution (left) of Scots pine (SP) as the main species of 
the overstorey and of birch (BI) as the main species of the understorey. The 
corresponding mean arithmetic values on the right. 

 
The aggregation index of Clark and Evans (1954) is a summary characteristic 
describing the diversity of tree position. The index does not have an individual tree 
equivalent. The aggregation index is defined as 
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observedr  stands for the mean of the distances from the trees to their nearest neighbours 

in a given forest stand, while E(r) is the mean nearest neighbour distance in a stand 
with completely random tree locations (“Poisson forest”). Usually, the interpretation 
of R-values is as follows: 
 
R > 1 if the pattern has a tendency to regularity, 
R = 1 if it is completely random (Poisson process), 
R < 1 if there is clustering in the pattern. 
 
A further index accounting for spatial tree species diversity is the coefficient of 
segregation, S, of Pielou (1977). It describes the degree of mixing of trees of two 
species A and B in a forest, and like the aggregation index R, it is based on the nearest 
neighbour tree distances. In Pielou’s notation, S is given as follows: 

Let N be the number of all pairs of trees (reference tree – nearest neighbour 
tree), let m and n be the numbers of trees of species A and B, respectively, and let r 
and s be the number of times trees of species A and B are found as the nearest 
neighbours of a reference tree. These numbers can be set out in a simple form in a 2 x 
2 table as follows. 
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 species of the nearest neighbour 

 A B total 
A a b m 
B c d n 

species of 
reference 

tree 
total r s N 

 
The coefficient of segregation is defined by 
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If the nearest neighbours are always of the same species as the reference trees, then S 
= 1. If all neighbours are of different species S = -1. In the case of complete 
randomness of species distribution, one can expect values around 0.  
 
The Shannon index3 (Shannon and Weaver, 1949) is an example of a non-spatially 
explicit algorithm describing species or size diversity. It is defined by  
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where 
pj probability of a randomly selected tree belonging to tree species j or to diameter 

class j 
n number of tree species or diameter classes in the forest. 
 
pj can be calculated as relative frequency of tree species either in terms of number of 
trees or basal area. Using basal area gives an additional aspect of density. The 
Shannon index takes the relative abundance of different species/size classes into 
account rather than simply expressing species/size richness. The rationale of this 
index is based on information theory. It measures the uncertainty of the next letter in a 
coded message or the next species to be found in a community. A monospecies forest 
would have no uncertainty and H’ = 0. The Shannon index is affected by both the 
number of species/diameter classes and their equitability or evenness. The index is 
particularly sensitive to the abundances of rare species in the community. 
 In order to be able to compare the diversity of different tree populations the 
Shannon index is often converted to the evenness index (eq. 1.33). 
 

                                                 
3 In the original publication the base 2 logarithm (log2) was used. The base e logarithm is, however, 

preferred in many studies. 
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By definition, the evenness index is constrained between 0 and 1 while the Shannon 
index can take a wide range of different values (Krebs, 1999).  

Based on the Shannon index Pretzsch (1998) developed the species profile 
index. This index accounts for relative species abundances in three different height 
zones ranging from 0-50%, 50-80% and 80-100% of maximum total tree height 
equating with Assmann’s definition of overstorey, mid storey and understorey 
(Assmann, 1970, Table 1.4).  
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where 
pij proportion of species i in height zone j 
n number of tree species in the forest. 
z number of height zones 
 
The species profile index summarises and quantifies species diversity and the vertical 
distribution of species in a forest. While the index is lowest in one-storeyed pure 
forests, it rises for pure forests with two or more storeys. Peak values are reached in 
mixed woodlands with heterogenous structures (Hanewinkel and Pretzsch, 2000). 
Evenness of the species profile index is calculated as 
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The index by Simpson (1949) gives the probability that any two individuals 

drawn at random from an infinitely large population belong to different species. 
Simpson suggested that this probability was inversely related to diversity. The 
Simpson index is considered a dominance index because it is weighted towards the 
abundance of the most common species. The index can also be applied to tree size 
diversity (diameters, height). In the literature the index has two base types: 
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where 
D  Simpson-Index base  



 

 

29

mN  number of individuals of species m 

∑ =
=

n

m mNN
1

 
 
The final Simpson indices can be calculated as either complementary or reciprocal 
form (eq. 1.37). 
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The original formula developed by Simpson is the left hand version of eq. 1.36 in 
conjunction with the left hand version of eq. 1.37. Krebs (1999) briefly discusses the 
advantages and disadvantages of the different versions. The corresponding evenness 
index to Simpson’s index is 
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Other structural indices are described in detail in Krebs (1999), Staudhammer and 
LeMay (2001), Neumann and Starlinger (2001), Pommerening (2002, 2006), 
Pommerening and Stoyan (2006) and Stoyan and Penttinen (2000). 
 
English: growing space; Welsh: gofod tyfu; German: Wuchsraum, Standraum; Russian: 
площадь питания дерева, пространство роста; Spanish: espacio de crecimiento; French: 
???. 
 

 Since competition between trees is an important aspect of silviculture much 
attention has been paid to the quantification of available growing space. Methods 
applied are very diverse and range from crown projection areas and the growing space 
index4 (Assmann, 1970) to Voronoi and Dirichlet tessellations (Stoyan and Stoyan, 
1994). A good overview of methods is given in Pretzsch (2002) and Wenk et al. 
(1990). 
 
English: leaf area index; Welsh: indecs arwynebedd dail; German: Blattflächenindex; 
Russian: индекс площади листьев, индекс листовой поверхности; Spanish: índice de área 
foliar; French: ???. 
 

                                                 
4 The growing space index is identical with the linear crown index or k/d ratio (eq. 2.7 in Table 2.2) and 
defined as crown diameter divided by tree diameter. In his investigation on the growth of wild cherry 
trees Spiecker (1994) detected a strong linear relationship between the growing space index and the 
diameter growth of individual trees. The index is comparatively easy to sample and offers a fairly 
robust and feasible measure of the growth potential of individual trees. 
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 An alternative to the quantification of growing space is the leaf area index 
(Waring, 1983; O’Hara, 1996). It is defined as the projected leaf surface area per unit 
of ground surface area (Kimmins, 1997; Laar and Akça, 1997). The leaf area index 
LAI = 0, if there are no leaves at all. If the leaf area corresponds to the soil surface 
area, LAI = 1. If the leaf area is twice the soil surface, LAI = 2. The maximum value of 
LAI = 16 is reached in the ever-green forests of west coast of the USA. Leaf area 
indices of 2.14 and 2.59 have been recorded by Mencuccini and Grace (1994) in 
Thetford and Aberfoyle forests for Scots pine. The leaf area index is closely related to 
photosynthesis and is also to the water balance of a site. The drier the site, the lower 
the leaf area. Grier and Waring (1974) found that leaf area is closely related to the 
basal area of sapwood. Each tree species has a specific leaf area-sapwood basal area 
relationship. Once the relationship for a species has been established foliage surface 
area per tree can easily be estimated simply by boring the tree to obtain an increment 
core. Similar conclusions have been made for example by Mencuccini and Grace 
(1994) in the United Kingdom. Leaf area also exhibits some interesting relationships 
with stemwood biomass on both an individual tree and a stand basis (Kimmins, 1997). 
O’Hara et al. (1999) and O’Hara et al. (2001) have suggested leaf area allocation as a 
woodland management guide. Dufrêne and Bréda (1995) and Wijk and Williams 
(2005) give good overviews of direct and indirect methods of measuring the leaf area 
index. 
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