
3 Modelling approach 
 
The TYFIANT COED approach incorporates aspects of a mechanistic stand model developed by 
Wenk et al. (1990) and Wenk (1994), which are adapted to a spatially explicit individual tree 
approach. 
 
3.1 Fundamental definitions 
 
The modelling approach is based on two fundamental definitions.  
 
Definition 3.1. The increment  is the difference in the value of a particular growth quantity 

 at different times t  and : 
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Definition 3.2. The increment is the product of growth quantity Y and relative increment p . 
 
(3.2)   ttittiY pYi ,,

 
Remark 3.1. The index i  can denote an individual tree or a whole forest stand. 
 
The two equations can now be set equal and be solved for . ttiY ,
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The result of this transformation is equation (3.3), which states 
 
“The growth quantity at time is equal to the product of the growth quantity at time t  and 
the reciprocal of the relative increment subtracted from 1.” 

tt

 

Definition 3.3. The growth multiplier M  is defined as the term 
ttip ,1
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: tt

 

(3.4)  
tti

tti p
M

,
, 1

1  

 39



 
With (3.4) in mind formula (3.3) can be written as: 
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This explains that the growth multiplier is defined as the ratio of a particular growth quantity 
at different times. It always refers to the end t t  of the observation or forecasting period. 
 
 
3.2 Function of the relative increment 
 

ttip ,  is the relative increment at time tt . From time series data where consecutive 
measurements of Y are available  can be calculated directly by means of formula (3.5) 
which uses volume in this particular example. 

ttip ,

 

(3.5)  , ,
,

,

i t t i t
i t t

i t t

V V
p

V
 

 
Mathematically increment is the first derivative of a growth function. There are several 
functions available that have been successfully tested and deliver appropriate values for 

 that can be inserted in formula (3.4). A growth function commonly used is 
Chapman/Richards: 

ttip ,
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In conjunction with volume as the primary variable of interest in the Tyfiant Coed approach 
another function of the relative increment has been developed based on the Gompertz 
function: 
 
(3.7)  
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In order to compensate for shortcomings of the original Gompertz function in lower age 
classes Wenk (1969) developed the following equation: 
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Definition 3.4. The parameter  in equation (3.8) is the growth parameter. At the time of 
culmination of the current annual increment 

1c

1c  = relative increment.  1c  [0,1].  
 
The parameter  accounts for juvenile growth of trees up to an age of 40 years with 
European species and 25-30 years with Sitka spruce. In most cases the parameters  and  
can be simplified by setting them constant to 1.0 and 0.4, respectively. 

2c

2c 3c

The function parameters, especially the growth parameter c1 and the parameter c2 are 
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interpretable and reflect the vitality of a tree as demonstrated in Pommerening and Wenk 
(2002).  
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Figure 3.1  The function of the relative increment (3.8) with 1 0.23c ,  ranging from 
0.5 to 5.0 and . 
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The Wenk function (3.8) always refers to the final age and only gives proper results if 
calculated for intervals of 10years period. Gerold and Römisch (1977) developed an 
approximation approach which allows the calculation of  for annual periods. As in most 
applications where variable interval lengths have to be dealt with this algorithm is central to 
the modelling theory used and is, therefore, briefly explained here (3.9). 

ttip ,

 

(3.9)  
, 10

1
, 1

, 10 1
1

n

i t j
j

i t n

i t j
j

M
M

M
 

 
, 1i tM  is the annual growth multiplier. This algorithm only works if the function of the 

relative increment approaches 0 (zero) with increasing age which function (3.8) does. With 
increasing  the quotient /n , 10i t nM , 10 1i t nM  approaches 1. Therefore n  in (3.9) is defined by 
the point when quotient /, 10i t nM , 10 1i t nM  falls below a certain threshold value, e.g. 1.0001. If 
observation/forecasting intervals other than 10 or 1 have to be used the correct growth 
multiplier can be derived from (3.9) by using formula (3.10). 
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For the purpose of this project algorithms (3.9) and (3.10) were embedded in a DLL written in 
Delphi (Pascal). The DLL can be embedded in MS EXCEL and MS FoxPro as well as other 
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programming environments. Figures 3.2 and 3.3 illustrate the difference between using the 
Gerold/Römisch approach (figure 3.2) and assuming that the conventional use of (3.4) and 
(3.8) lead to correct results for a 4 and 9 year interval. The real growth multipliers were 
calculated from formula (3.5). 
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Figure 3.2  Comparison between calculated (using 3.9 and 3.10) growth multiplier 

(mvcalc) and true growth multiplier (mvreal) at the age of 24 of the SS time 
series BB 2068 (4 year interval). 
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Figure 3.3  Comparison between calculated (ignoring 3.9 and 3.10) growth multiplier 

(mvcalc) and true growth multiplier (mvreal) at the age of 30 of the SS time 
series BB 2068 (9 year interval). 

 
The Gerold/Römisch approach leads to a perfect agreement of calculated and observed 
growth multipliers while deriving the growth multiplier without it results in a bias which 
increases with increasing growth multiplier. The calculated growth multiplier in this case 
overestimates the real one. 
 
 
3.3 Allometrics: The modelling of height and diameter growth 
 
The functions developed in 3.1 – 3.2 allow the modelling of volume growth or the growth of 
biomass. Following the approaches developed by Wenk et al. (1990) and Wenk (1994) 
volume growth is now allometrically linked with height and diameter growth. 
 
As early as the 19th century foresters such as Preßler and Schneider successfully used so-
called allometric relationships to explain the growth of one part of a tree by the growth of a 
different part of the same tree. This is based on the fundamental finding that the relative 
increment of one growth quantity is proportional to that of another growth quantity of one and 
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the same organism (see also Pienaar and Turnbull, 1973). Allometric relationships are used in 
this approach to derive height and diameter increment from volume increment. 
 
The volume of a tree at a given time t  can be described as the product of basal area , 
height  and a form factor . The absolute growth values can be replaced by the 
corresponding multipliers. Then we can derive the reciprocals of all growth multipliers. 
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The factor , ,1 f i t tp  can in most cases from an age of 40 years onwards be disregarded 
because the change of tree form is very marginal. This leads to  
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Wenk (1978) found the allometric relationship 
 
  ,

, , , ,1 1 i t tm
v i t t h i t tp p , 

whereby the exponent  is the allometric coefficient. Solved for height multiplier ,i t tm , ,h i t tM  
the equation reads 
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The diameter multiplier can then be derived as follows Wenk et al. (1990, p. 109) 
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