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a b s t r a c t

Many different spatio-temporal individual-based models (IBM) for forests have been developed for
studying the development of trees in space and time. Such models typically depend on various numer-
ical parameters that represent the ecological processes of growth (G), inter-plant competition (C) and
birth-and-death (B&D; also called regeneration and mortality). Until now little work has been done to
systematically trace the influence of these processes and their model parameters on the spatial structure
of forest ecosystems.

This paper attempts to fill this gap by addressing an important aspect of forest structure, spatial vari-
ability, characterised by the mark variogram as a summary characteristic. The model used was inspired by
components of various well-established IBMs including a shot-noise competition field. Time series data
from monospecies forests in three different countries of the northern hemisphere provided ecological
reference scenarios. Though a case study, the paper’s methodology is rather general and can be applied
to any model and forest ecosystem.

Methods of sensitivity analysis revealed that only a small number of model parameters is crucial for
forming spatial variability. Particularly important is the range of competition between trees; with increas-
ing range the variability increases. Growth processes have considerable importance particularly with
short observation periods and in young forests, whereas mortality processes become more influential
in the long-term. Naturally, these statements depend upon the initial structure and on the length of the
observation period.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Spatial patterns in plant populations are the result of com-
plex dynamics involving three main processes: plant growth (G),
inter-plant competition (C, hereafter termed just competition) and
birth-and-death processes (B&D) (Vanclay, 1994; Hasenauer, 2006).
These three ecological processes interact in a complicated dynamic
way making it difficult to disentangle them. Part of the difficulty
in isolating relative influences is that the only firm evidence of the
G, C and B&D processes are the resulting spatial patterns. There-
fore linking spatial patterns to processes is of particular interest
in plant ecology, since this allows diagnosing the development
of plant communities and even to understand successional stages
from ad hoc field data (Perry et al., 2006; Law et al., 2009). How-
ever, there is no unique solution; similar spatial patterns can be the
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result of different underlying processes, see for example Comas and
Mateu (2007).

An important property of plant patterns is their spatial vari-
ability (see for example Perry et al., 2006). Only recently suitable
statistical measures have been developed, namely various corre-
lation functions (Cressie, 1993; Illian et al., 2008), including the
mark variogram. Papers such as Wälder and Stoyan (1996), Stoyan
and Wälder (2000), Kint et al. (2003) and Suzuki et al. (2008)
have demonstrated the power of the mark variogram in ecological
research.

Clearly, long-term field experiments will improve our under-
standing of how changing ecological conditions affect vegetation
dynamics. However, computer experiments based on suitable mod-
els offer an immediate and efficient way of studying processes of
spatial pattern formation. This line of analysis is also very flexible,
since ecological conditions can be freely determined, not neces-
sarily depending on the particular conditions of concrete field
experiments. As always in computer experiments, there is the slight
risk that situations may be constructed in the model which cannot
appear in nature.

0304-3800/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2010.10.019
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In models used for this purpose, the three ecological processes
are described mathematically. Particular aspects are characterised
by numerical model parameters. This provides the opportunity to
study the relevance and influence of these parameters on spatial
pattern formation. For example, the undoubted influence of C can
be analysed in greater detail by investigating the influence of range
and strength of competition, expressed by suitable parameters.

Spatio-temporal individual-based models (IBM) are ideal for
this kind of computer experiments, because they simulate the
development of plant communities in sufficient detail (Grimm and
Railsback, 2005). We applied such a model to the case of tree com-
munities, since spatio-temporal data from forests are currently
more readily available. However, the same methodology could be
applied to other plant communities.

For our study, we developed an IBM using ideas from spatial
statistics and experience from existing spatio-temporal individual-
based models. We implemented well-established components of
existing models with the aim to obtain results which have the
potential to be of a general nature. In the modelling and parame-
terisation process principles of pattern-oriented modelling (Grimm
and Railsback, 2005) were used, involving real patterns of tree den-
sity, mean stem diameter and spatial forest structure. To simplify
the analysis, we excluded births. (These did not occur in the time
series data available to this study.) We demonstrated the suitabil-
ity of our model by fitting it to three spatio-temporal forest data
sets. The parameters estimated were used as starting values for the
simulations.

The objective of this paper is to reveal and to quantify the influ-
ences of model parameters on spatial pattern formation through
computer experiments and thus to understand the related ecolo-
gical processes.

In analysing the influences of the model parameters we used
methods of sensitivity analysis (SA), namely a modified version
of a classical screening method, a so-called one-at-a-time experi-
ment (OAT), and a modern method, the extended Fourier amplitude
sensitivity test (eFAST) as described in Saltelli et al. (2000).

The systematic application of these methods to forest models
is still uncommon. Most of the studies in the literature were for
biogeochemical models (see for example Matsushita et al., 2004;
Rüger et al., 2007; White et al., 2008), which are, however, less rel-
evant to the research question addressed in this paper. Berger et al.
(2002) investigated the influence of a model parameter control-
ling the range of competition on the resulting skewness of the tree
diameter distribution and on a self-thinning characteristic using an
individual-based model and OAT. All these papers did not consider
spatial variability characteristics. The focus was rather on model
outputs that are by their nature real-valued variables and that cha-
racterise means like plant density and mean stem diameter or the
variability behaviour of single trees measured as the skewness of
the stem diameter distribution.

However, “spatial patterns” or “spatial variability” are numer-
ically diffuse notions that cannot be sufficiently expressed by a
single real number. The usual way in spatial statistics is to use func-
tions as summary characteristics. We decided to choose the mark
variogram for this purpose, because it characterises spatial corre-
lations between tree sizes, in our case stem diameters. The mark
variogram was then used to construct a suitable real-valued output
variable as required in SA.

2. The spatio-temporal model

2.1. Model description

Our model belongs to the class of spatio-temporal individual-
based models. Examples of spatio-temporal IBM include the models

Moses (Hasenauer, 2006), Silva (Pretzsch et al., 2002) and the
mangrove-specific tree model KiWi (Berger and Hildenbrandt,
2000). Also the Tree and Stand Simulator (TASS) model developed
by Mitchell (1975) belongs to this group, whereas SORTIE (Pacala
et al., 1993, 1996) is a so-called process-based model, which explic-
itly models biogeochemical processes in plants. There are also a
number of spatio-temporal models which use point process mod-
els of a more mathematical nature, e.g. Renshaw and Särkkä (2001)
and Särkkä and Renshaw (2006).

For presenting our model we follow the standard protocol
(ODD—Overview, Design concepts and Details) for describing
individual-based models as proposed by Grimm et al. (2006, 2010).

2.1.1. Purpose
The model was developed for analysing spatio-temporal

dynamics of even-aged forests consisting of only one species. It
was a particular objective to understand how intraspecific compe-
tition, growth and mortality affect the spatial structure of a forest,
in particular its spatial variability. The model was parameterised
for three tree species occurring in separate forests in Switzerland,
Austria and Canada (see Section 2.4).

2.1.2. State variables and scales
The model has two hierarchical levels, individual trees and

the forest, i.e. the population to which the trees belong. At indi-
vidual level, growth, competition and mortality are considered.
An individual tree i is described by (1) an identity number, (2)
a location, �i, of the stem centre expressed in Cartesian coordi-
nates, (3) a stem diameter (=diameter at breast height, measured
at 1.3 m above ground in cm, denoted as dbhi,t) and (4) an annual
diameter increment, idi,t, the latter two depending on time t,
given in years. Tree competition is spatially explicit, see Section
2.1.4, Interaction. The rectangular observation window (typically
between 0.10 and 5 ha) defines the boundaries of the forest and
can be arbitrarily selected. The nine model parameters are tree
species-specific.

2.1.3. Process overview and scheduling
The trees’ life cycle is described by two biological sub-models

operating in discrete, annual time steps. The first sub-model deter-
mines the stem diameter increment depending on a tree’s potential
diameter increment and its competition load. The second sub-
model deals with mortality and consists of two components. The
first component simulates natural tree mortality depending on the
diameter growth during a reference period of the last five years. The
second component takes care of natural disturbances and cutting.
To keep the model simple, the establishment of new trees was not
considered.

At the beginning of each time step, all tree diameters are updated
synchronously. Then the mortality rule is applied and afterwards
the competition load is calculated for the remaining trees. Finally
diameter growth is determined for the next time step.

2.1.4. Design concepts
Basic principles: The growth sub-model reflects the well-known

fact that diameter growth of trees inside a forest is reduced
compared to that of open-grown trees, which typically face no com-
petition (Newnham, 1964; Botkin et al., 1972). In our model, as a
substitute of growth data from open-grown trees increment data of
the most dominant trees were used (Pretzsch et al., 2002). The com-
petition sub-model is based on a random field for describing the
competition load of single trees in a forest, following Adler (1996),
Berger and Hildenbrandt (2000) and Illian et al. (2008), p. 435f.
The additive superposition of competition effects exerted by single
trees describes the competition load or competition intensity that
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a tree would face at a given location. The deterministic mortal-
ity component utilises the well-known observation that trees have
to maintain some level of diameter growth at all times for their
survival.

Emergence: We explicitly model the life of each tree depend-
ing on growth, local competition and mortality. Emergent system
dynamics include (1) the spatial structure of the forest, (2) the dis-
tribution of tree sizes, (3) self-thinning behaviour and (4) response
to human management.

Adaptation: Mortality and cutting enlarges the growing space
available to some trees. As a consequence these trees have access
to more resources, which increases the growth of stem diameters.

Objectives: The objective of the adaptive trait mentioned above
is individual survival through continuous growth.

Sensing: Individual trees are assumed to be aware of their own
state variables, of the model parameters related to the tree pro-
cesses and of their competition load.

Interaction: The competition for spatially distributed resources
is modelled using the idea of the shot-noise field, see Illian et al.
(2008). According to this approach every tree exerts a local com-
petition effect, which depends on its stem diameter and decreases
with increasing distance from the tree. To derive the competition
load of a tree, the competition effects of all other trees are additively
aggregated. The resulting total competition load is then weighted
by the stem diameter of the tree considered. This determination of
competition load mainly reflects asymmetric competition, which
is defined by Weiner (1988) as an unequal sharing of resources as a
consequence of larger individuals having a competitive advantage
over smaller ones.

Incidentally, Berger and Hildenbrandt (2000) use the term “field
of neighbourhood” (FON) instead of “shot-noise field” in their IBM.
There have been other papers that have considered multiplicative
aggregation of competition effects, such as Wu et al. (1985) and
Miina and Pukkala (2002), who refer to an “ecological field” in this
context.

Stochasticity: The second component of the mortality sub-model
includes a stochastic element to account for variability of death and
survival events, for which it is unimportant to model the actual
causes. All other sub-models are completely deterministic.

Observation: At the end of each model run the model allows
saving all state variables but also the derived variables such as the
competition load of each tree. In addition, summary characteristics
such as the empirical mark variogram, mean stem diameter and
tree density averaged over N model runs can be saved. The output
files are in ASCII format and can easily be imported by spreadsheet
and statistical software for further analysis and visualisation.

2.1.5. Initialisation
The model is initialised with a starting configuration of trees, i.e.

tree locations and stem diameters. In our applications, we used the
data from the original time series for this purpose. Also the length of
the observation period, T, in this study ranging from 10 to 50 years,
was in most cases taken from the time series data, once we worked
with a shorter T. Furthermore, the model is initialised with a set of
nine model parameters, which are read from an input file and are
specific for each investigated forest. This initialisation is fixed for
all N runs of a simulation. In this study we used N = 500 runs.

2.1.6. Input data
The model does not use input data to represent varying envi-

ronmental processes.

2.1.7. Submodels
2.1.7.1. Growth. The biological core of the model is the G pro-
cess. Growth is modelled using the potential-modifier approach
(Newnham, 1964; Botkin et al., 1972). In this approach, potential

Fig. 1. Map of monitoring plot 3 (Douglas fir [Pseudotsuga menziesii var glauca
(Mirb.) Franco], Canada) at the beginning of the time series in 1988. The filled grey
circles represent tree locations, circle sizes indicate relative diameters. The contour
lines represent the shot-noise field calculated according to Eq. (3). The largest field
values between 14 and 15 can be observed in the bottom right corner between
27 < x < 30 and 3 < y < 7.

annual diameter increments are determined, i.e. increments that
would be observed if the trees grew largely in absence of any com-
petition from other trees. These increments are then reduced based
on inter-tree competition, C.

The potential diameter increment idpot
i,t

is modelled for each tree i
and time t according to a Chapman-Richards-type growth function,
similar to Pretzsch et al. (2002) and Pretzsch (2009):

idpot
i,t

= A · (1 − exp(−k · dbhi,t))
p · k · p · exp(−k · dbhi,t), (1)

where A, k and p are model parameters. In the original Chapman-
Richards function, the parameter A is an asymptote representing
the maximum diameter for all trees of a given forest, parame-
ter k scales the growth rate and p determines the location of the
inflection point of the growth function, as explained in Pienaar and
Turnbull (1973).

Finally, using the competition load ctrans
i.t

, a growth modifier, as
determined in Eq. (5) below, the annual diameter increment, idi,t,
is obtained as

idi,t = idpot
i,t

· � · (1 − ctrans
i,t ). (2)

Here � is a further model parameter, which can be interpreted as
another modifier. This parameter allows us to equate both sides
of the equation. Without � both terms in Eq. (2) would only be
proportional; incidentally, parameter � will play no individual role
in the SA.

2.1.7.2. Competition. Tree growth and consequently diameter
growth is hampered by competition among trees. To model this
impact, in each time step first a competition field was constructed
based on the actual forest configuration, given by tree locations and
stem diameters. The value of ci,t (see Eq. (4)) of this field at the posi-
tion of tree i was considered the corresponding competition load
and was then used to determine the increment, idi,t, by means of
Eq. (2).

The distance-related decrease of the local competition effect is
modelled using a negative exponential function. The local compe-
tition effects of all trees in a forest are additively aggregated. This
results in a competition field (see also the illustration in Fig. 1),
which gives for any location � and time t the competition load ct(�)
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Fig. 2. The local competition effect pj,t(�) (Eq. (3)) of a tree j with 20 cm and 10 cm dbhj,t . Top left: Original model parameters ˛, ˇ and ı for the beech (Fagus sylvatica L.,
Embrach, Switzerland) time series as compiled in Table 1. Top right: ˛ increased by 20%, ˇ and ı fixed to the values of Table 1. Bottom left: ˇ increased by 100%, ˛ and ı fixed.
Bottom right: ı increased by 100%, ˛ and ˇ fixed.

as

ct(�) =
∑

j

pj,t(�) =
∑

j

dbh˛
j,t · exp

(
−ı · distj(�)

dbhˇ
j,t

)
(3)

with positive model parameters ˛, ˇ and ı; distj(�) is the Euclidean
distance between the location of an arbitrary tree j and another
location in the forest, �.

Consequently, the competition load of tree i at time t can be
expressed as

ci,t =
∑
j /= i

pj,t(�i) =
∑
j /= i

dbh˛
j,t · exp

(
−ı · distj(�i)

dbhˇ
j,t

)
. (4)

The ci,t values are computed with periodic boundary conditions
(Illian et al., 2008) to reduce edge effects. The value of ci,t is only
dependent on the diameter of the trees influencing tree i and the
distance distj(�i) between tree i and tree j.

However, the impact of competition load also depends on the
size of the affected tree i. Therefore, a further transformation of ci,t
is required, which is inspired by Adler (1996). This transformation
combines the size of the affected tree i with its competition load ci,t
and is given by

ctrans
i,t = ci,t

dbh˛
i,t

+ ci,t
. (5)

By construction, ctrans
i,t

is scaled between 0 and 1. Note that the
exponent ˛ in Eq. (5) is the same parameter ˛ as in Eqs. (3) and (4).

2.1.7.3. Mortality. First, following Berger et al. (2004), the trees’
growth information over the last 5 years (=5 growth periods)
was used for the deterministic component. The basic premise is
that trees with low increments tend to die. However, refining the
approach in Berger et al. (2004), diameter multipliers mdi,t were

used instead of absolute diameter increments, and defined as

mdi,t = dbhi,t

dbhi,t−1
(6)

following Wenk (1994). Clearly, the mdi,t values all satisfy mdi,t ≥ 1,
and mdi,t = 1 indicates “no growth”, which can be the result of heavy
competition, senescence or disease. Again following Berger et al.
(2004), five subsequent mdi,t are combined by quadratic averaging
to obtain

mdi,t =
√

1
5

(md2
i,t

+ md2
i,t−1 + · · · + md2

i,t−4). (7)

If this quadratic mean is smaller than a prescribed critical value
mdcrit, the corresponding tree dies. For convenience, the parameter
mdcrit is expressed in the form

mdcrit = 1 + c

1000
, (8)

where c is a further model parameter, which replaces mdcrit as a
mortality parameter in the sensitivity analyses that follow, in order
to obtain a reasonable parameter scale. The deterministic mortality
component represents regular mortality resulting from competi-
tion.

Second, for the stochastic mortality component, a tree i dies
during a growth period with probability

probi,t = a ·
(

dbhi,t

dgt

)b

(9)

with model parameters a and b. Here, dgt is the quadratic mean
diameter and is calculated as

dgt =
√∑n

i=1

dbh2
i,t

n
(10)

from all n trees in the forest at time t. The quadratic mean diameter
is a well-established summary characteristic in forest biometrics
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that has often been successfully used in the context of mortality
modelling (see Chen et al., 2008; Crecente-Campo et al., 2009; Sims
et al., 2009).

The model was constrained to ensure that pi,t ≤ 1. To implement
the stochastic component, a tree dies, if a random number between
0 and 1 is less than its probability of mortality.

2.2. Role and interpretation of the model parameters

For purposes of the sensitivity analyses, a separate use of param-
eters A (from Eq. (1)) and � (from Eq. (2)) is not necessary. It is easy to
see that the product of A and � can be viewed as a single parameter,
denoted as A�.

The parameters of Eqs. (3) and (4) can be easily interpreted. The
exponent ˛ scales resource allocation as a function of tree diameter
(Adler, 1996); a large value of ˛ increases the strength of the local
competition effect of tree j (see top section of Fig. 2) and therefore
we refer to ˛ as strength parameter. ˇ and ı, on the contrary, are
range parameters (see bottom section of Fig. 2). The parameter ˇ
scales the decrease of the competition signal with distance distj(�)
(Adler, 1996); a large value of ˇ stretches the range of the compe-
tition impulse. The parameter ı also has an effect on the range, but
it acts conversely to ˇ. Adler (1996) found that ˛ and ˇ are related
to self-thinning processes whilst ı has only an auxiliary role. We
did comparative calculations by modifying these two range param-
eters by the same amounts (see again the bottom section of Fig. 2).
This revealed that ˇ had indeed a much greater effect on the model
outputs than ı, which was also noted by Adler (1996). Fig. 2 shows
the local competition effect pj,t(�) as a function of the distance from
the exerting tree for two diameters.

An increase of the values of the growth parameters A� and of
the range parameter ı will lead to increasing idi,t, while increasing
ˇ can decrease idi,t. The influence of the strength parameter ˛ on
idi,t is less than that of other competition parameters.

The role of the growth parameters k and p is more complex.
k scales the potential diameter increment, and, up to the point
where diameter increment is maximum, increasing k also increases
the diameter increment. Beyond that point, increasing values of k
lead to a decrease in diameter increment. Thus an increase of k
means rapid growth for smaller trees and slower growth or smaller
increments for larger trees. Parameter p determining the location
of the maximum of the increment curve has the opposite effect:
An increase of p means slow growth for smaller trees and larger
increments for larger trees.

Increasing parameter values of a, b and c lead to increasing mor-
tality.

2.3. Parameter estimation

For our analyses, we required realistic model parameters. To this
end, we used the parameters estimated from the time series data
of three forests, where the locations of all trees were recorded and
each tree was repeatedly measured.

All model parameters were estimated separately for each for-
est. To obtain model parameters A, k and p for potential diameter
increment, we first grouped the trees into 4 cm-diameter classes.
For each diameter class, the 95–100% percentiles of tree increment
values were selected from the data for fitting Eq. (1), assuming that
they represent potential growth under moderate or no inhibiting
competition. The annual diameter increments were derived from
periodic diameter increments, i.e. the averages of 5–10 years’ incre-
ment observations. Using these results the parameters A, k and p
were estimated through nonlinear least squares regression in the
statistical analysis software SAS (SAS, 2010).

In contrast to traditional competition indices (Biging and
Dobbertin, 1992, 1995), the competition parameters ˛, ˇ and ı (Eqs.

(3) and (4)) must be estimated simultaneously with the growth
parameter � (Eq. (2)). A hybrid quasi-Newton least squares method
for the estimation of ˛, ˇ, ı and � was used in this study and imple-
mented in SAS (SAS, 2010).

Finally, the mortality parameters were estimated by means of a
simulated annealing method, as described in detail in Murphy and
Pommerening (2010). The necessary starting values were found by
trial and error.

2.4. Description of the three forests

The three tree populations selected represent a wide range
of growth conditions to demonstrate the wide applicability of
the model. However, the investigation was intentionally limited
to predominantly mono-species forests to focus on intra-specific
competition at this stage. As noted, no birth processes occurred
during the measurement period for any of the three study
sites.

The beech (Fagus sylvatica L.) spatio-temporal data for plot
41–700 (0.25 ha in size) belongs to a Swiss thinning trial at Embrach
(longitude: 8◦10′22.13′′, latitude: 47◦22′18.32′′). The plot is in an
even-aged beech forest which was established between 1891 and
1905 and re-measured every 5–10 years until 1991. However, spa-
tial information is only available from 1940 onwards, with 107
trees in 1940. The plot is located at 590 m a.s.l with a mean annual
temperature of 8.3 ◦C and a mean annual precipitation of 1030 mm.

The Norway spruce (Picea abies (L.) Karst.) spatio-temporal
data for plot 31 (0.12 ha in size) is part of a replicated thinning
experiment at Karlstift (Austria, longitude: 14◦45′59.7′′, latitude:
48◦34′50.8′′). The trees have naturally regenerated and the plot is
located at 930 m a.s.l. with a mean annual temperature of 4.5 ◦C and
a mean annual precipitation of 950 mm. The plot was established in
1964 in predominantly even-aged Norway spruce and re-measured
every five years until 2004. The spatio-temporal measures began in
1994 with 135 trees.

The interior Douglas fir (Pseudotsuga menziesii var glauca (Mirb.)
Franco) spatio-temporal data for plot 3 (0.10 ha in size) is part
of a larger study in the Alex Fraser Research Forest in British
Columbia (Canada, (longitude: 52◦3′, latitude: 121◦52′) at approx-
imately 1000 m a.s.l. The mean annual temperature is 4.2 ◦C and
the mean annual precipitation is 450 mm. The plot is located in an
uneven-aged Douglas fir forest and was established in 1988 and
re-measured three times until 2004. This forest site had not been
cut for the last 20 years or longer, and is under protection from
large scale fires, which otherwise frequently occur in this forest
type (LeMay et al., 2009). The initial number of trees in 1988 was
252.

The beech and the Norway spruce forests have a fairly uniform
structure and are much more influenced by human disturbances
than the Douglas fir forest, which can be considered as a natural
forest.

2.5. Estimated model parameters

For each forest, all nine model parameters were estimated and
presented in Table 1. Because of the differences between these three
forests caused by different ecological conditions, the estimated
parameters vary considerably. The differences are particularly large
for the parameters b and p for the beech versus Douglas fir forests.

Table 1 also gives the root mean square error and mean bias
for the predicted annual diameter increments using the calibrated
model. Fig. 3 shows a comparison between observed and predicted
diameters at the end of the observation periods. Also, the empiri-
cal and simulated mark variograms were compared, as these play
a crucial role in our study. The low biases and root mean square
errors, along with good coincidence between actual and predicted
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Table 1
Site and species-specific parameters of the three spatial time series beech (Fagus sylvatica L., Embrach, Switzerland), Norway spruce (Picea abies (L.) Karst., Karlstift, Austria) and
interior Douglas fir (Pseudotsuga menziesii var glauca (Mirb.) Franco, Alex Fraser Research Forest, British Columbia, Canada). G—tree growth, C—competition and B&D—birth-
and-death processes.

Parameter Description Beech Norway spruce Douglas fir Estimation

1 G A� Diameter increment parameter:
product of parameter A in the potential
diameter increment model (Eq. (1))
and parameter � in the diameter
increment estimation (Eq. (2)).

46.2678 24.9407 134.4464 Regression

2 k Parameter in the potential diameter
increment model (Eq. (1)).

0.0415 0.0658 0.0263

3 p Parameter in the potential diameter
increment model (Eq. (1)).

5.1544 5.5289 0.5470

4 C ˛ Shot-noise parameter scaling impulse
strength (Eq. (3)).

1.8045 2.3760 0.3548

5 ˇ Shot-noise parameter scaling impulse
range (Eq. (3)).

0.7570 0.6599 0.4375

6 ı Shot-noise parameter scaling impulse
range (Eq. (3)).

6.7249 9.6583 1.7214

7 B&D a Mortality parameter in 2nd mortality
source (Eq. (9)).

0.0091 0.0322 0.0125 Trial & Error + Simulated Annealing

8 b Mortality parameter in 2nd mortality
source (Eq. (9)).

1.9203 0.5791 0.0117

9 c Critical diameter multiplier threshold
for the average of a 5-year period (1st
mortality source; Eq. (8)).

6.61 – 3.01

10 T Observation period of the research site
in years.

51 10 16 –

RMSE Root mean square error of annual
diameter increment estimation in cm.

0.12092 0.10649 0.07033 –

Bias Bias of annual diameter increment
estimation in cm.

0.00228 −0.00021 −0.00375 –

mark variograms indicate that the model fits well the different data
and that the parameterisation is accurate.

3. Sensitivity analyses

3.1. Introduction

This paper uses methods of sensitivity analysis for tracing the
contribution of model parameters and of the corresponding pro-
cesses in spatial pattern formation. The aim of sensitivity analysis
in general is to explore for a given model the influence of model
parameters xi on an output variable y. The output of the model is a
real number, which is a deterministic function of the xi (see Saltelli
et al., 2000),

y = f (x1, ..., xs). (11)

The vector (x1, ..., xs) is considered a point in an s-dimensional
“parameter space”. In local sensitivity analysis, parameters are var-
ied within a neighbourhood centred at some point in the parameter
space, which is often called “midpoint” or “origin”. Global meth-
ods try to simultaneously explore the model behaviour over the
whole parameter space. A question of particular interest is param-
eter interaction (Saltelli et al., 2000, 2004; Marino et al., 2008).
Roughly speaking, this concerns the mutual influence of the xi in
such a way that, for example, a simultaneous increase of x1 and x2
leads to a larger effect on y than a simple addition of the effects of a
separate increase of x1 and x2. (Parameter interaction is a concept
quite different to parameter correlation.)

We considered s = 9 numerical parameters x1, ..., x9, following
the numbering in Table 1. Only subsets of the whole theoretical
9-dimensional parameter space 0 ≤ xi ≤ xi, max (where xi, max is a
suitable maximum value of xi) can be used, because many param-
eter vectors lead to implausible results or do not occur in nature.
A common indication of such combinations is the premature death
of all trees of the forest. To ensure ecologically sound starting con-
figurations, we decided to use the original model parameters as

estimated from the three times series. We used them as starting
points for the sensitivity analyses and then studied the behaviour
of the model in the neighbourhood of these “origins”.

For the beech time series, we also included a shorter observation
period of T = 16 in addition to the original observation period of
T = 51, in order to assess the influence of T on the results of the
sensitivity analyses.

We then ran the model with varied model parameters in the
neighbourhood of the estimated parameters given in Table 1.

As output variable we considered for y in Eq. (11) a second-
order characteristic, closely related to the mark variogram. After a
number of comparative experiments using different second-order
characteristics, we decided to focus on the mark variogram, �(r), as
this characteristic very clearly represents differences in the result-
ing point patterns (see for example Kint et al., 2003; Suzuki et al.,
2008). This characteristic includes information on the spatial vari-
ability of tree locations as well as on tree marks. (If it had been our
objective to disentangle mark and location variability, we would
have used the ideas in Renshaw et al., 2007). The mark variogram
is defined as

�(r) = 1
2

E(m(o) − m(r))2, (12)

i.e. half the mean of the squared mark difference for two points of
distance r, see Illian et al. (2008). The function is set to 0 for r values
smaller than r0, the smallest occuring inter-tree distance. Then it
has the tendency to increase up to an r value r1 referred to as range
of correlation. Beyond that point the function fluctuates around a
constant value that is equal to the variance of the marks, see, for
example, Figure 5.21 on page 349 in Illian et al. (2008). The curve
for the Douglas fir forest in Fig. 3 is close to this behaviour, while
the other two curves in Fig. 3 show typical deviations. (The beech
variogram curve shows a similar pattern to that of the Douglas fir
forest for small r, but exhibits more variation at larger distances. For
the Norway spruce forest, the decrease of the curve for small r indi-
cates short-range tree interactions, i. e. the occurrence of pairs of



Author's personal copy

672 A. Pommerening et al. / Ecological Modelling 222 (2011) 666–678

0

10

20

30

40

50

60

70

80

80706050403020100

Estimated DBH [cm]

Observed DBH [cm]
0

10

20

30

40

50

60

70

302520151050

r  [m]

γ (r )

0

10

20

30

40

50

60

6050403020100

Estimated DBH [cm]

Observed DBH [cm]
0

10

20

30

40

50

60

70

80

302520151050

r  [m]

γ (r )

0

10

20

30

40

403020100

Estimated DBH [cm]

Observed DBH [cm]
0

10

20

30

40

50

60

302520151050

r  [m]

γ (r )

Fig. 3. Estimated versus observed diameters for: (top left) plot 41–700 (Embrach beech [Fagus sylvatica L.] time series) in 1991 after 51 annual simulation periods; (centre left)
plot 3 (interior Douglas fir [Pseudotsuga menziesii var glauca (Mirb.) Franco] time series) in 2004 after 16 annual simulation periods; and (bottom left) plot 31 (Norway spruce
[Pseudotsuga menziesii (L.) Karst.] time series) in 2004 after 10 annual simulation periods. Empirical variogram (solid line) and corresponding variogram of the simulation
involving both mortality models (dotted line) for: (top right) observed beech data in 1991; (centre right) Douglas fir data in 2004; and (bottom right) Norway spruce data in
2004. A bandwidth of h = 4.0 m was used in all cases for the mark variograms. The horizontal dotted lines correspond to the diameter variance.

dominant and suppressed trees at short distances.) In general, large
values of �(r) result from a high degree of spatial variability of the
marks, while the ratio of r1 to r0 characterises spatial correlation.

Since the mark variogram is a function of inter-tree distance r
and all values of r (within an ecologically relevant interval) have to
be considered, �(r) is not a suitable output variable for SA. Therefore
a discrepancy number �m was used, which is defined as

�m =
∫ r1

r0

(�0(r) − �(r))m dr, (13)

where �0(r) is the mark variogram for the forest of interest with the
model parameters in Table 1; �(r) is the mark variogram represent-
ing another point in the parameter space, i.e. with the same starting
configuration and observation period T as for �0(r), but with differ-
ent parameters; m is an exponent, where the cases m = 2 and m = 1
are of particular interest. Thus �m characterises the deviation of
�(r) from a given “null” mark variogram �0(r).

In the model calculations, we approximated the integral by a
sum using a step width of 0.5 m. The lower integral limit, r0, cor-
responds with the hardcore distance (minimum distance between
trees) rounded up to the nearest 0.5 m step. We defined the upper
limit r1 in such a way that it corresponded with the correlation

range of the mark variogram �0(r) of the original data at the
end of the observation period, T. This decision was made since
usually short distances between trees are of particular ecological
importance in forest ecosystems, as this is the spatial range where
stronger interactions commonly take place. As a result, �m was
calculated between 1.5 m and 8.5 m for the beech forest (15 sum-
mands), between 0.5 m and 5.5 m for the Douglas fir forest (11
summands) and 2.0 m and 7.5 m for the Norway spruce forest (12
summands). All mark variograms �(r) and �0(r) were estimated
according to Illian et al. (2008) with a bandwidth of 4.0 m.

With the aim to analyse smooth, locally approximately linear
functions, we decided to use �1, i.e. the quantity in Eq. (13) with
m = 1, which is a signed real variable that is equal to zero when
the model parameters used in generating �(r) and �0(r) are the
same. (Then in fact we consider the difference of integrated mark
variograms. The integral in Eq. (13) then becomes the difference of
the integrals

∫ r1
r0

�(r) dr and
∫ r1

r0
�0(r) dr). This decision was made,

because

1. We observed undesirable results for alternative definitions of
deviation measure, �2 and |�1|, a quantity similar to �1 but
using absolute differences, |�0(r)–�(r)|. By definition, the cor-
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Fig. 4. Behaviour of the model function �1 for the mark variogram with respect to the nine parameters (OAT analysis). The bars (left) show the corresponding slopes of �1

in the parameter ranges (right) in which the dependence of �1 on the parameters is (nearly) linear.

responding integrands are positive and so are the two �m

characteristics. Thus we obtained a positive deviation measure
even if we chose the original parameters of Table 1 for simulat-
ing forest development, based on two independent estimates of
�0(r).

2. The use of �2 and |�1|, which corresponds to the L1 and L2

norms used in functional analysis, leads to functions f in Eq. (11)
which are strictly nonlinear even in the near neighbourhood of
the original model parameters.

A disadvantage of our choice of �1 is that in the integral in Eq.
(13) (and in the corresponding sum) positive and negative differ-
ences may cancel out, resulting in a value of �1 = 0 even when �(r)
and �0(r) are not equal for all r. However, in our simulation exper-
iments the corresponding mark variograms showed a behaviour
where our deviation measure made sense for nearly all parameters.
Thus �1 constitutes our function f in Eq. (11).

This may be the appropriate place to comment on our choice of
the number of runs, N, as in the model description of Section 2.1.5.
Naturally, the mark variograms obtained from different runs of
our model differed even though starting configurations and model
parameters were fixed, because of the stochastic component in
the mortality sub-model. However, for the sensitivity analyses we
required a deterministic function f. After some experimentation we
found that N = 500 runs were sufficient in all cases to obtain reliable
mean value results for the output variable �1. (If our output had
been the mean stem diameter only, a smaller value of N would be
sufficient.)

3.2. One-at-a-time analysis

A classical form of sensitivity analysis is one-at-a-time (OAT)
analysis (Saltelli et al., 2000). In this analysis, the influence of each
model parameter is assessed by varying the parameter but fixing
all others (ceteris paribus). Mathematically, this yields information
about the marginal influence of each model parameter in the neigh-
bourhood of the respective origin (x1,0, . . ., x9,0), which can be
characterised by a partial derivative or slope, assuming that f is
a smooth function of its parameters.

This gives valuable information on the “importance” of each
parameter: a parameter xi is considered as more important than
parameter xj, if∣∣∣∣ ∂f

∂xi

∣∣∣∣>

∣∣∣∣ ∂f

∂xj

∣∣∣∣ . (14)

We calculated f(x1,0, . . ., xi,0 + di, . . ., x9,0), where di is the actual
deviation of parameter xi from the origin value xi,0. The analysis

proceeded in equidistant steps of di between

0 and 2 xi,0, i.e. xi,0 ± 100% of xi,0.

We were particularly interested in an approximately linear
behaviour of f in dependence of xi in the neighbourhood of the
origin, i.e. in an approximate relationship as

f (x1,0, . . . , xi,0 + di, . . . , x9,0) = f (x1,0, . . . , x9,0) + aidi,

where ai = ∂ f/∂ xi, since this indicates smoothness around the origin,
and is related to the first term of a Taylor expansion.

For all forests and all parameters xi, the intervals including
xi,0 with a nearly linear behaviour of f depending on xi were
determined. They differ between (−100%, 100%) and (−10%, 10%).
Outside of these intervals the behaviour can be strongly nonlinear.
The partial derivatives were estimated using a relative scale, such
that xi,0 = 0 and 2xi,0 = 1 in the case of the full −100%, 100%-interval.
This facilitated comparisons between parameters. The slopes of
approximating lines were estimated by linear regression using the
values in the linearity intervals and forcing the lines through the
known values at the origins. The results for the output variable �1
are shown in Fig. 4. Note that these slopes can be positive or nega-
tive, indicating the direction in which the variables influence spatial
variability.

3.3. Extended Fourier Amplitude Sensitivity test

As an alternative to simple OAT the extended Fourier Amplitude
Sensitivity test, a variance-based global sensitivity method (Saltelli
et al., 2000) was applied. The Fourier Amplitude Sensitivity Test
(FAST) was first devised in the 1970s by Cukier and others (see
Cukier et al., 1978) and further developed by Saltelli et al. (1999) to
become the extended FAST method. eFAST is model-independent
and is applicable irrespective of the degree of linearity or additivity
of the model. The method quantifies the contribution of the indi-
vidual input parameters to the variance of the output variables. It
reveals both parameter main effects on the model output and the
sum of the effects due to its higher-order interactions with other
parameters (Saltelli et al., 2000; Saloranta and Andersen, 2007).

The model output was analysed based on discrete Fourier trans-
formation using the software package SimLab 2.2 (Simulation
environment for uncertainty and sensitivity analysis, Saltelli et al.,
2004). Following its specific sampling procedure 30,000 function
values for different parameter sets were calculated, i.e. 30,000
times 500 = 15,000,000 replications were made, since every func-
tion value is based on 500 runs. This corresponds to parameter
values sampled in a wave-like form, so that the amplitude of the
particular wave was equal to the parameter’s predefined variation
range. The sampling covered the whole multidimensional param-
eter space. We applied this procedure to all parameter sets.
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Table 2
Variation percentages around the standard parameter values for the multiple parameter variation of the extended Fourier Amplitude Sensitivity Test (eFAST).

Parameters Beech, T = 16 Beech, T = 51 Norway spruce Douglas fir

1 G A� ±10% ±5% ±90% ±20%
2 k ±10% ±5% ±25% ±25%
3 p ±10% ±5% ±25% ±25%

4 C ˛ ±10% ±5% ±90% ±40%
5 ˇ ±10% ±5% ±25% ±30%
6 ı ±10% ±5% ±25% ±30%

7 B&D a ±30% ±10% ±90% ±50%
8 b ±30% ±10% ±90% ±50%
9 c ±10% ±5% – ±10%

The eFAST method also allows a grouping of parameters and
thus an upscaling of the results for single parameters to those
of the three processes. After analysing the individual contribu-
tion of each of the model parameters to the output variance,
we re-analysed the model behaviour by grouping the model
parameters into: growth (A�, k, p), competition (˛, ˇ, ı) and birth-
and-death (a, b, c) processes. The eFAST group analysis included
20,000 model runs per forest and observation period with 500
runs.

The suitable parameter space was determined in preliminary
investigations as a sub-set of the whole nine-dimensional paral-
lel epipedon 0 ≤ xi ≤ xi,max, which was taken as a smaller parallel
epipedon. Each variable varied in an interval defined by two
variation percentages around the respective origin between min-
imum and maximum ranges, see Table 2. The percentages were
determined so that no nine-dimensional point within the smaller
epipedon led to a very extreme result (e.g. with too many trees
dying before the end of the observation period). This criterion
resulted in different variation percentages for the parameters,
which even differed for the two beach simulations with different
observation periods T.

It is interesting to compare the percentages (i.e. the sizes of
the parallel epipedons) for the Norway spruce and Douglas fir
data with those for the beech data. Because of the longevity of
the observation period for the beech forest, any parameter vari-
ation was expected to have a larger impact on the resulting spatial
patterns, while for the other two forests smaller impacts were
expected. Indeed, the variation percentages for the beech forest
are clearly smaller than for the spruces and firs. It is also interest-
ing to compare the linearity intervals found in the OAT analysis
with the percentage intervals used in the eFAST analysis. We
found that for all model parameters, the linearity intervals were
often much smaller than the full (−100%, 100%)-sensitivity-analysis
interval. However, the percentage intervals of the eFAST analy-
sis were always even smaller and completely within the linearity
intervals.

In the eFAST analysis we assumed uniform distributions of all
model parameters within the minimum – maximum ranges, which
is standard practice (Saltelli et al., 2000).

4. Results

4.1. Single model parameters

The results of the OAT and eFAST analyses are very similar and
are therefore presented together in one section. The ecological
interpretation will follow in Section 5. Throughout Section 4 we
will discuss the influence of the model parameters on the output
variable �1 based on Figs. 4 and 5.

Beech forest: The three parameters of main influence are ˇ, k and
c, the latter is more important in the case of T = 51 (Figs. 4 and 5).
Considering the comparatively slow growth of beech, competition,
in particular the range of competition, is apparently most impor-
tant followed by growth represented by parameter k. Mortality, as
expressed by parameter c, has for T = 16 little influence but becomes
more important with the longer observation period.

Douglas fir forest: Competition parameters play a major role,
again the range parameters ˇ and ı. Additionally, the growth
parameters A� and p are important.

Norway spruce forest: The three growth parameters and the com-
petition range parameter ˇ are the most important ones. However,
competition is less prominent in this forest than in the other two.

Parameter interaction characterised by its portion of the total
variance in the eFAST analysis is less than 30% in the majority of
cases, as shown in Fig. 5.

In summary, the competition range parameter ˇ, is most
influential followed by the growth parameter k. An increase of
parameter ˇ leads to increased variability in all four cases; the role
of k is less clear, probably because of the complex role of k in the
growth model.

4.2. eFAST group analysis

The results of the eFAST group analysis are presented in Fig. 6.
They characterise the joint behaviour of the parameters corre-
sponding to the three processes G, C and B&D. Since no births
occurred in our time series data as explained in Sections 1 and 2,
B&D only reflects mortality in our study.
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Fig. 5. Proportions of the total variance explained by nine model parameters (Table 1) with regard to the model function, �1, analysed by the extended Fourier amplitude
sensitivity test (eFAST) method. The grey area (main effect) denotes the portion of total variance explained by the particular parameter alone and the black area (interactions)
similarly the part explained by all parameter interactions where the particular parameter is included.
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Fig. 6. Proportions of the total variance explained by groups of model parameters (Table 1) with regard to the model function, �1, analysed by the extended Fourier amplitude
sensitivity test (eFAST) method. The grey area (main effect) denotes the portion of total variance explained by the particular parameter alone and the black area (interactions)
similarly the part explained by all parameter interactions where the particular parameter is included.

In the beech and Douglas fir forest, the competition parameters
contribute most prominently to the total variance of spatial vari-
ability characteristic �1. By contrast, in the Norway spruce forest,
the dominating process is G. Interpreting the heights of the bars of
the main effects in Fig. 6, for the beech forest and T = 51, C is three
times “more important” than G, i. e. the competition parameters
explain three times more variance than the growth parameters. In
the case of the longer observation period, B&D is two times more
influential than in the case of T = 16 on the expense of G. In the
Norway spruce forest, G is more than four times more important
than competition, whilst B&D plays a minor role. The results of the
Douglas fir forest show a pattern similar to that of the beech for-
est, i.e. C is more than three times more influential than G and B&D
plays again an insignificant role.

As with the analysis of single model parameters, parameter
interactions are in all cases not particularly strong.

In summary, competition processes mainly influence the spatial
variability characteristic �1.

5. Discussion and conclusions

We developed an explanatory model that enabled us to study
the influence of parameters associated with the processes growth
(G), inter-plant competition (C) and birth-and-death (B&D) on the
spatial variability variable �1 for three quite different forests. Thus
a model-based approach provided a means of examining the influ-
ence of ecological processes for larger spatial and longer temporal
extents, which hardly can be gained through field experiments.
Sensitivity analyses were used to investigate the importance of
particular aspects, characterised by model parameters, of the eco-
logical processes G, C and B&D.

The results obtained can be well explained ecologically. It is easy
to understand that competition plays a major role in the beech for-
est and that for the longer observation period mortality is more
important than for the shorter. However, it is perhaps surprising
that the range of correlation, expressed by parameter ˇ, turned out
to be so influential. Increasing ˇ increases the range and strength of
competition and thus increases the size differences between dom-
inating and suppressed trees. Therefore it is ecologically plausible
that increasing values of ˇ increase spatial variability expressed by
�1.

We observed the same trend also for the Douglas fir forest.
This is a natural forest with a complex structure. Human inter-
ventions have been absent from this site for the last 16 years. It is
usually assumed that competition processes are of greater impor-
tance the more unaffected by human management and the more
structurally complex a forest is (Davies and Pommerening, 2008;
Pretzsch, 2009). Also, fierce competition for soil water appears to
be a serious issue, since the site is located in the interior, dryer parts
of British Columbia (LeMay et al., 2009).

The results were different for the Norway spruce forest. Here
competition was expected to be less important because the struc-
ture of the forest is simple and regular thinnings take place, which

reduce competition. Furthermore, the Norway spruce forest is
comparatively young and according to the growth dynamics of
this species growth is the most important process at this age.
This behaviour was indeed observed, and the short observation
period of T = 10 may partly explain why mortality is less impor-
tant.

We applied two methods, the basic one-at-a-time and the more
complex eFAST, and obtained similar results. This double-checked
our results. OAT provided a simple way of finding the directions in
which the parameters influence variability.

The aim of our study was to understand the influence of ecolog-
ical process parameters on spatial variability. For this purpose, �1
was a suitable output variable. For other questions, other output
variables may be of value. If the focus of a study is for example on
the spatial variability of tree locations only, �1 may be replaced by
a characteristic using the difference of K functions K0(r) and K(r)
in the integral in Eq. (13). And if stem diameters are of primary
interest, the difference of diameter distribution functions may play
the role of the integral over the difference of mark variograms. (The
cumulative nature of the K function and of the distribution function
avoids the integral.)

Our study shows that the initial structure of a forest plays an
important role as well as the length of the observation period T.
The former reflects the forest development stage in the beginning,
for example stand initiation, stem exclusion, understory reinitia-
tion and old growth stage as defined by Oliver and Larson (1996);
depending on the development stage, different processes domi-
nate. For small T, even large changes of the parameters will cause
only small changes in the pattern at the end of the period, while for
large T even small parameter variations can cause great changes.
In particular the comparison of the two different observation peri-
ods T = 16 and T = 51 for the beech forest shows that the growth
parameter k is more important for short-term effects on spatial
tree patterns, whilst the mortality parameter c is more influential
when long-term effects are studied. As k scales the growth rate,
see Eq. (1), this parameter naturally has a major influence on the
diameter growth as shown in the sensitivity analyses; however its
role is more complex than that of ˇ, there is no unique reaction to
increasing k.

The results also emphasised the importance of time as a cru-
cial factor in assessing the relative weight of different processes.
While growth and competition are continuous processes that take
place in every time step, death processes are discrete. They can
occur in smaller or larger numbers at one particular point in time
and fail to occur for many years afterwards. This may explain why
mortality parameters can only assume some importance if a spa-
tial pattern is investigated which is the result of processes of many
years, where discrete mortality events accumulate. The study by
Rüger et al. (2007) involving observation periods of up to 1000
years supports this view. The reader should note that mortality
heavily influences the mark variogram as disappearing trees lead
to the isolation of others and potentially to large size differences of
neighbouring trees.
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Fig. 7. The variability of the model results demonstrated for the interior Douglas fir [Pseudotsuga menziesii var glauca (Mirb.) Franco] time series in 2004 after 16 annual
simulation periods (T = 16). Five hundred model runs with the original model parameters from Table 1 were used. Left: The mark variograms �0(r) (solid line—mean of 500
runs, dashed lines—minima and maxima of 500 runs, bars—mean values ± standard deviation). Right: Empirical distribution of the mean tree diameter d̄ from 500 runs.
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Fig. 8. Proportions of the total variance explained by nine model parameters (Table 1) with regard to mean diameter, d̄, analysed by the extended Fourier amplitude sensitivity
test (eFAST) method. The grey area (main effect) denotes the portion of total variance explained by the particular parameter alone and the black area (interactions) similarly
the part explained by all parameter interactions where the particular parameter is included.

The length of the time interval T also has an influence on param-
eter interaction. The results for beech in Figs. 5 and 6 indicated that,
in many cases, parameter interactions decrease with increasing T.

When testing the model behaviour we also explored the vari-
ability of the model output and were surprised by its large extent,
although the only stochastic element in our IBM was that of the
second mortality component (Eq. (9)). Since stochasticity is an
important feature of IBMs, our observation should be noted by
potential users; such effects have been infrequently reported in
other papers on IBMs. As mentioned in Section 3, the authors had
to use 500 runs per model run in both sensitivity analysis methods
to obtain reliable mean value results for the output variable �1 (see
Fig. 7).

The study results indicate a number of general trends which
may be of interest for future investigations. Both the OAT and
eFAST analyses identified the range parameter ˇ and the growth
parameter k as the most important model parameters; competi-
tion has proved to be an important variability-generating process
in all three forests. Since the mark variogram was used, this state-
ment includes both the variability of tree locations and diameters
and is supported by other studies such as Davies and Pommerening
(2008) and Gray and He (2009). Depending on the development
stage of the forest under study, the eFAST analysis highlighted that

competition can be 3–4 times more important than growth and 3–8
times more influential than mortality. These quantitative relations
between the three processes can help to better link spatial patterns
to development stages (Christensen et al., 2007), since they are
likely to take characteristic values in different development stages.

Within the quantification of competition, the range of tree inter-
action, characterised by our model parameter ˇ, is of particular
importance. That the identification and modelling of tree inter-
action ranges merits attention is an interesting and important
message.

In this paper, birth processes were not considered, but with
suitable data the same methods could be applied to parameters
relating to this process. Two to three more parameters would
probably suffice, perhaps one parameter describing the intensity
of tree seedlings and another one controlling the degree of clus-
tering (see for example Batista and Maguire, 1998; Nanos et al.,
2010).

Finally, the authors also investigated tree density, �, and mean
tree diameter, d̄, as output variables in addition to �1. Both vari-
ables do not represent spatial variability. Nevertheless, some of
the results of SA are similar to those associated with �1. � is
largely influenced by ˇ and k. The eFAST results for d̄ are shown
in Figs. 8 and 9. Again, also for the mean diameter ˇ and k are the
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Fig. 9. Proportions of the total variance explained by groups of model parameters (Table 1) with regard to mean diameter, d̄, analysed by the extended Fourier amplitude
sensitivity test (eFAST) method. The grey area (main effect) denotes the portion of total variance explained by the particular parameter alone and the black area (interactions)
similarly the part explained by all parameter interactions where the particular parameter is included.
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most important model parameters in the case of the beech forest,
while for the Norway spruce forest the growth parameters A� and k
are dominant and for the Douglas fir forest again the range param-
eters ˇ and ı. The eFAST group analysis (Fig. 9) highlights that G
and C are almost equally important in the beech forest for T = 16,
whilst for T = 51 in the same forest G is three times more important
than C. This again reflects the decisive influence of the observa-
tion period, but shows an interesting difference to the behaviour
of spatial variability expressed by �1. In the Norway spruce forest
G has also by far the greatest influence on d̄, whilst C is dominat-
ing in the Douglas fir forest. This can be explained by the fact that
the Norway spruce forest is in a development stage and age class,
where growth processes clearly prevail. By contrast, the Douglas
firs (especially the smaller trees) are exposed to fierce competi-
tion as mentioned above and this has a marked influence on tree
diameters.

Another question, which was beyond the remit of this paper,
is the question of parameter correlation. If we considered differ-
ent forests, we would find, of course, different model parameters
as a result of fitting our model. Statistical analysis may show
that some of the parameters are correlated. So far we only anal-
ysed three forests with the model approach used, therefore it was
not possible to carry out a reliable correlation analysis. Therefore
we assumed parameter independence in the sensitivity analyses.
However, preliminary results of a follow-up investigation sug-
gest that there are strong positive correlations between ˛ and ı
while the range parameter ˇ is only weakly correlated with the
two other competition parameters. More studies with other for-
est types are, of course, required to confirm these preliminary
results.

This study points to an area of quantitative ecology which
deserves more attention and further systematic investigations. The
use of an IBM coupled with parameter sensitivity analyses can give
insights into ecological processes and their effect on spatial point
patterns in forests, but may also provide insights for other plant
communities.

Acknowledgements

The authors thank the Research Committee of the School of
the Environment, Natural Resources and Geography (Bangor Uni-
versity, Wales, UK) for the funding of three research visits to
Bangor and Freiberg which helped to develop the idea for this
paper. A SUTROFOR fellowship funded Valerie LeMay’s term at
Bangor University in summer 2008. Andreas Zingg (Swiss Federal
Institute for Forest, Snow and Landscape Research WSL, Birmens-
dorf, Switzerland) kindly provided beech time series data. Dr
Markus Neumann (Austrian Federal Research and Training Cen-
tre for Forests, Natural Hazards and Landscape, Vienna, Austria)
contributed the Norway spruce time series data to this study for
which the authors are very grateful. Professor Peter Marshall (Uni-
versity of British Columbia, Vancouver, Canada) kindly made his
interior Douglas fir data available for this work. Professor Uta Berger
(Dresden Technical University, Germany) supported the study with
comments based on her experience with the KiWi growth model
and Dr. Volker Grimm (UFZ Centre for Environmental Research
Leipzig-Halle, Germany) with comments on the ODD protocol. Dr
Nadja Rüger (Dresden Technical University, Germany) and Dr Ste-
fano Tarantola (Joint Research Centre of the European Commission,
Ispra, Italy) provided helpful guidance for the use of the SimLab
software. Professor Hans Pretzsch offered valuable advice on Eq.
(1). Mikey West (Bangor University) has greatly contributed to
this study through hardware and network support. We are also
very grateful for the valuable and constructive comments of three
anonymous reviewers.

References

Adler, F.R., 1996. A model of self-thinning through local competition. In: Proceedings
of the National Academy of Sciences of the United States of America, vol. 93, pp.
9980–9984.

Batista, L.F., Maguire, D.A., 1998. Modeling the spatial structure of tropical forests.
For. Ecol. Manage. 110, 293–314.

Berger, U., Hildenbrandt, H., 2000. A new approach to spatially explicit modelling of
forest dynamics: spacing, ageing and neighbourhood competition of mangrove
trees. Ecol. Model. 132, 287–302.

Berger, U., Hildenbrandt, H., Grimm, V., 2002. Towards a standard for the
individual-based modeling of plant populations: self-thinning and the field-of-
neighbourhood approach. Nat. Resour. Model. 15, 39–54.

Berger, U., Hildenbrandt, H., Grimm, V., 2004. Age-related decline in forest produc-
tion: modelling the effects of growth limitation, neighbourhood competition
and self-thinning. J. Ecol. 92, 846–853.

Biging, G.S., Dobbertin, M.S., 1992. A comparison of distance-dependent competition
measures for height and basal area growth of individual conifer trees. For. Sci.
38, 695–720.

Biging, G.S., Dobbertin, M.S., 1995. Evaluation of competition indices in individual
tree models. For. Sci. 41, 360–377.

Botkin, D.B., Janak, J.F., Wallis, J.R., 1972. Some ecological consequences of a com-
puter model of forest growth. J. Ecol. 60, 849–872.

Christensen, M., Emborg, J., Busse Nielsen, A., 2007. The forest cycle of Suserup
Skov—revisited and revised. Ecol. Bull. 52, 33–42.

Comas, C., Mateu, J., 2007. Modelling forest dynamics: a perspective from point
process methods. Biomet. J. 49, 176–196.

Chen, H.Y.H., Fu, S., Monserud, R.A., Gillies, I.C., 2008. Relative size and stand age
determine Pinus banksiana mortality. For. Ecol. Manage. 255, 3980–3984.

Crecente-Campo, F., Marshall, P., Rodríguez-Soalleiro, R., 2009. Modeling non-
catastrophic individual-tree mortality for Pinus radiata plantations in north-
western Spain. For. Ecol. Manage. 257, 1542–1550.

Cressie, N., 1993. Statistics for Spatial Data. Revised Edition. John Wiley & Sons, New
York, USA, 900 pp.

Cukier, R.I., Levine, H.B., Shuler, K.E., 1978. Nonlinear sensitivity analysis of multi-
parameter model systems. J. Comput. Phys. 26, 1–42.

Davies, O., Pommerening, A., 2008. The contribution of structural indices to the mod-
elling of Sitka spruce (Picea sitchensis) and birch (Betula spp.) crowns. For. Ecol.
Manage. 256, 68–77.

Gray, L., He, F., 2009. Spatial point-pattern analysis for detecting density-dependent
competition in a boreal chronosequence of Alberta. For. Ecol. Manage. 259,
98–106.

Grimm, V., Railsback, S.F., 2005. Individual-based Modelling and Ecology. Princeton
University Press, Princeton, USA, 428 pp.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J.,
Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M.,
Müller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Ross-
manith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabø, R., Visser, U.,
DeAngelis, D.L., 2006. A standard protocol for describing individual-based and
agent-based models. Ecol. Model. 198, 115–126.

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F., 2010. The
ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768.

Hasenauer, H. (Ed.), 2006. Sustainable Forest Management. Growth Models for
Europe. Springer-Verlag, Heidelberg, Germany, 398 pp.

Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., 2008. Statistical Analysis and Modelling
of Spatial Point Patterns. John Wiley & Sons, Chichester, UK, 534 pp.

Kint, V., Meirvenne, M., van Nachergale, L., Geudens, G., Lust, N., 2003. Spatial meth-
ods for quantifying forest stand development: a comparison between nearest
neighbor indices and variogram analysis. For. Sci. 49, 36–49.

Law, R., Illian, J., Burslem, D.F.R.P., Gratzer, G., Gunatilleke, C.V.S., Gunatilleke,
I.A.U.N., 2009. Ecological information from spatial patterns of plants: insights
from point process theory. J. Ecol. 97, 616–628.

LeMay, V., Pommerening, A., Marshall, P., 2009. Spatio-temporal structure of multi-
storied, uneven-aged interior Douglas fir (Pseudotsuga menziesii var glauca
(Mirb.) Franco) stands. J. Ecol. 97, 1062–1074.

Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E., 2008. A methodology for performing
global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254,
178–196.

Matsushita, B., Xu, M., Chen, J., Kameyama, S., Tamura, M., 2004. Estimation of
regional net primary productivity (NPP) using a process-based ecosystem
model: how important is the accuracy of climate data? Ecol. Model. 178,
371–388.

Miina, J., Pukkala, T., 2002. Application of ecological field theory in distance-
dependent growth modelling. For. Ecol. Manage. 161, 101–107.

Mitchell, K.J., 1975. Dynamics and simulated yield of Douglas-fir. For. Sci. Monograph
17, 39 pp.

Murphy, S.T., Pommerening, A., 2010. Modelling the growth of Sitka spruce (Picea
sitchensis (Bong.) Carr.) in Wales usingWenk’s model approach. Allg. Forst- u.
J.-Ztg. [German Journal of Forest Research] 181, 35–43.

Nanos, N., Larson, K., Millerón, M., Sjöstedt-de Luna, S., 2010. Inverse modelling for
effective dispersal: do we need tree size to estimate fecundity? Ecol. Model. 221,
2415–2424.

Newnham, R.M., 1964. The development of a stand model for Douglas fir. PhD thesis.
University of British Columbia, Vancouver, Canada, 201 pp.

Oliver, C.D., Larson, B.C., 1996. Forest Stand Dynamics. Update Edition. John Wiley
& Sons, New York, USA, 520 pp.



Author's personal copy

678 A. Pommerening et al. / Ecological Modelling 222 (2011) 666–678

Pacala, S.W., Canham, C.D., Silander, J.A., 1993. Forest models defined by field mea-
surements: the design of a northeastern forest simulator. Can. J. For. Res. 23,
1980–1988.

Pacala, S.W., Canham, C.D., Saponara, J., Silander, J.A., Kobe, R.K., Ribbens, E., 1996.
Forest models defined by field measurements: estimation, error analysis and
dynamics. Ecol. Monogr. 66, 1–43.

Perry, G.L.W., Miller, B.P., Enright, N.J., 2006. A comparison of methods for the sta-
tistical analysis of spatial point patterns in plant ecology. Plant Ecol. 187, 59–82.

Pienaar, L.V., Turnbull, K.J., 1973. The Chapman-Richards generalization of von Berta-
lanffy’s growth model for basal area growth and yield in even-aged stands. For.
Sci. 19, 2–22.

Pretzsch, H., Biber, P., Ďurský, J., 2002. The single tree-based stand simulator SILVA:
construction, application and evaluation. For. Ecol. Manage. 162, 3–21.

Pretzsch, H., 2009. Forest Dynamics, Growth and Yield. Springer Verlag, Berlin,
Germany, 664 pp.

Renshaw, E., Särkkä, A., 2001. Gibbs point processes for studying the develop-
ment of spatial-temporal stochastic processes. Computat. Statist. Data Anal. 36,
85–105.

Renshaw, E., Mateu, J., Saura, F., 2007. Disentangling mark/point interaction in
marked-point processes. Comput. Statist. Data Anal. 51, 3123–3144.

Rüger, N., Gutiérrez, Á.G., Kissling, W.D., Armesto, J.J., Huth, A., 2007. Ecological
impacts of different harvesting scenarios for temperate evergreen rain forest
in southern Chile—a simulation experiment. For. Ecol. Manage. 252, 52–66.

Saloranta, T.M., Andersen, T., 2007. MyLake—a multi-year lake simulation model
code suitable for uncertainty and sensitivity analysis simulations. Ecol. Model.
207, 45–60.

Saltelli, A., Tarantola, S., Chan, K.P.-S., 1999. A quantitative model-independent
method for global sensitivity analysis of model output. Technometrics 41, 39–56.

Saltelli, A., Chan, K., Scott, E.M. (Eds.), 2000. Sensitivity Analysis. John Wiley & Sons,
Chichester, UK, 475 pp.

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity Analysis in Prac-
tice. A Guide to Assessing Scientific Models. John Wiley & Sons, Chichester, UK,
219 pp.

Särkkä, A., Renshaw, E., 2006. The analysis of marked point patterns evolving through
space and time. Computational Statistics and Data Analysis 51, 1698–1718.

SAS 8.2 Documentation, 2010. Changes and Enhancements, Release 8.2. SAS Institute
Inc., Cary, NC, 620 pp.

Sims, A., Kiviste, A., Hordo, M., Laarmann, D., Gadow, K.v., 2009. Estimating tree
survival: a study based on the Estonian Forest Research Plots Network. Ann.
Bot. Fennici 46, 336–352.

Stoyan, D., Wälder, O., 2000. On variograms in point process statistics. II. Models of
markings and ecological interpretation. Biom. J. 42, 171–187.

Suzuki, S.N., Kachi, N., Suzuki, J.-I., 2008. Development of a local size-hierarchy
causes regular spacing of trees in an even-aged Abies forest: analyses using
spatial autocorrelation and the mark correlation function. Ann. Bot. 102, 435–
441.

Vanclay, J.K., 1994. Modelling Forest Growth and Yield. Applications to Mixed Trop-
ical Forests. CABI Publishing, Wallingford, UK, 312 pp.

Weiner, J., 1988. Variation in the performance of individuals in plant populations.
In: Davy, A.J., Hutchings, M.J., Watkinson, A.R. (Eds.), Plant Population Ecology.
Blackwell Scientific Publications, Oxford, pp. 59–81.

Wenk, G., 1994. A yield prediction model for pure and mixed stands. For. Ecol.
Manage. 69, 259–268.

Wälder, O., Stoyan, D., 1996. On variograms in point process statistics. Biom. J. 38,
895–905.

White, T., Luckai, N., Larocque, G.R., Kurz, W.A., Smyth, C., 2008. A practical approach
for assessing the sensitivity of the carbon budget model of the Canadian forest
sector (CBM-CFS3). Ecol. Model. 219, 373–382.

Wu, H., Sharpe, P.J.H., Walker, J., Penridge, L.K., 1985. Ecological field theory: a spatial
analysis of resource interference among plants. Ecol. Model. 29, 215–243.


