
Appendix C
Brief Introduction to the R language

C.1 Introduction

Whilst most programs nowadays use interactive graphical user interfaces, R is
mainly command-driven. The user has to type in sequences of commands and to
request R to execute them. This is something one needs to get accustomed to, how-
ever, it has the advantage that the user can be more flexible for creative and complex
tasks such as the development of simulation models. With menu-based programs we
much depend on the particular organisation of that program (Braun and Murdoch,
2007) and has limited choices.

The following pages have been designed to ease the process of getting used to
the command-line approach of the R software. They are a hands-on introduction for
readers who are unfamiliar with R to offer just enough material to get started and to
motivate beginners to explore and experiment with the program.

Download R from http://cran.r-project.org and select the “CRAN mir-
ror” for your country of residence. Click on the download link for your operating
system and on the subfolder “base”. It is sufficient for the purpose of this book to
download and install a binary (precompiled) version. Then click on the download
link and launch the installation program. (Double) clicking on the R icon will launch
the program.

With no prior knowledge of R it is recommended to follow the examples below
during the course of 1-3 days to get started. The introductory chapters of Braun and
Murdoch (2007), Bolker (2008), Dalgaard (2008), Jones et al. (2009) and Robinson
and Hamann (2010) will help to expand the basic knowledge given in this appendix.
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154 C Brief Introduction to the R language

C.1.1 Basics

The greater-than sign (>) is the prompt symbol indicating that R is ready for user
inputs. When this appears in the console window you can type commands. For ex-
ample, you can simply use R as a calculator in the following way

> 1 + 2
[1] 3

The number in square brackets in the output line gives the index number of the first
element. Operators can also be nested, e.g.

> (8 - 5)
*

3
[1] 9

first 5 is subtracted from 8 and then multiplied by 3.
Although all possible R commands can be typed and run at the prompt, it is rec-

ommended to write scripts in the document window of the graphical user interface
(GUI). They can be saved on your computer drive (commonly with the extension
*.R) and will eventually serve as a valuable collection of numerical recipes that you
may like to come back to at a later stage. Scripts can be exchanged between col-
leagues thus enhancing professional collaboration. Also saved R scripts are a good
reproducible documentation and repository of your data manipulation and analysis
work. They can for example be attached to BSc, MSc or PhD theses and scientific
papers as supplementary material.

In the R console, commands are executed by hitting the Enter button. By con-
trast, commands typed in the R script editor need to be highlighted followed by
pressing Ctrl-R in MS Windows and Cmd-Enter in Mac OS for execution. Alter-
natively you can click on the corresponding icon in the GUI. It is possible to run
every code line separately and also to highlight several lines and to execute them at
the same time.

Continuing lines are automatically indicated by the + sign when the first line is
incomplete.

> 5
*

+ 2^3
[1] 40

Often the appearance of + in the console means that parantheses or quotes need to
be balanced (Robinson and Hamann, 2010, p. 7). A summary of basic operators and
functions can be found in Table C.1.

Any alphanumeric character including “_” and “.” (but no spaces) that start with
a letter can freely be selected as variable names (Bolker, 2008, p. 23), however,
some letters and words have been reserved by R and should be avoided, e.g. “F”
(= False), “T” (= True) and “data”. Values are assigned to variables using the <-

sign, the assignment operator.
As demonstrated in the second and third line of the code below, x has the value

of 3 and can be used in subsequent calculations.
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Table C.1 Basic arithmetic operators and functions.

Operator/function Description

+, - Addition and subtraction
*, / Multiplication, division
^ Power
abs() Absolute
exp() Exponential function
log() Natural logarithm
logb(x, base = 2) Logarithm to the base 2
sqrt() Square root
round() Rounds decimal numbers
floor() Rounds decimal numbers down
ceiling() Rounds decimal numbers up
sin(), cos(), tan() Trigonometric functions
integrate() Calculates the integral of a function
<, > Smaller, greater than
==, != Equal, unequal
<=, >= Smaller equal, greater equal
&, | And, or
is.na() Missing?

> x <- 3
> x
[1] 3

Typing and running the variable name again will allow you to see its value. Alter-
natively you can execute the command print(x). Inside loops (see Section C.1.5)
only the command print(x) produces the desired output in the R console.

Comments are useful to remember what you had in mind when writing your code.
They should be marked with # (hash key) to inform the compiler that what follows
in the corresponding line is non-executable code that should be ignored. The hash
key can also be used to disenable lines of code.

> sin(pi / 2) # This is a comment.

[1] 1

Also it is important to be aware of the fact that R is case-sensitive, i.e. variable
names involving lower-case and upper-case versions of the same letter essentially
constitute different variables and confusing them can cause errors:

> dbh <- 16.5
> Dbh
Error: object ’Dbh’ not found

Almost all objects in R are internally represented by vectors even if they contain
only one number. The round brackets in the listing below force R to print the vector
dbh after assigning the value of 5.6 to it. This saves typing another command line
for displaying the value of dbh.

> (dbh <- 5.6)
[1] 5.6
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In R, functions always require round brackets containing no, one or more arguments
and return results without any additional prompt. Using the function c() (= concate-
nate) you can easily create vectors with multiple values, e.g. a dbh list. A strength
of R is that it can handle entire data vectors as single objects (Dalgaard, 2008, p. 4).

> (dbh <- c(5.6, 10.3, 14.5, 27.8, 48.5))
[1] 5.6 10.3 14.5 27.8 48.5

Vectorisation and vector arithmetics are an important feature of R to make data
processing more efficient. length(dbh) returns the length of a vector.

> length(dbh)
[1] 5

To access a particular stem diameter of the vector dbh, e.g. the second one, type

> dbh[2]
[1] 10.3

Using the function c again allows selecting several values at the same time.

> dbh[c(2, 4, 5)]
[1] 10.3 27.8 48.5

In R, square brackets are always applied to select a subset of data. Negative indices
can be used to suppress certain elements. You can for example select all but the
second diameter:

> dbh[-2]
[1] 5.6 14.5 27.8 48.5

It is also possible to print all stem diameters larger than 15 cm with the following
code.

> dbh[dbh > 15]
[1] 27.8 48.5

Vectors can be manipulated by using basic arithmetic operators, e.g. we can let the
stem diameters grow using a growth multiplier of 1.3 (see Chap. 2.1).

> dbh
*

1.3
[1] 7.28 13.39 18.85 36.14 63.05

As a result all elements of the vector length(dbh) have been multiplied by 1.3.
Naturally vectors can be modified by any other operator or mathematical function.

We can now apply the first summary characteristics to vector dbh. For this pur-
pose we use functions that are written in a similar way as in MS Excel and other
programs. Minimum and maximum dbh we can for example calculate in the follow-
ing way:

> min(dbh)
[1] 5.6
> max(dbh)
[1] 48.5
> range(dbh)
[1] 5.6 48.5
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A summary including similar characteristics can be achieved with the command
summary(dbh).

> summary(dbh)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.60 10.30 14.50 21.34 27.80 48.50

The range command produces minimum and maximum at the same time. min, max
and range are functions that are part of the common functionality of R. More so-
phisticated descriptive statistics include the arithmetic mean, the median, the stan-
dard deviation and the coefficient of variation as given in the code below.

> mean(dbh)
[1] 21.34
> median(dbh)
[1] 14.5
> sd(dbh)
[1] 17.29026
> sd(dbh) / mean(dbh)
[1] 0.8102276

Other frequently used statistical functions are provided in Table C.2.

Table C.2 Basic arithmetic operators and functions.

Operator/function Description

var(x) Variance of x
quantile(x, p) p quantile of x
cor(x, y) Correlation between x and y
prod(x) Product of x
sum(x) Sum of x
diff(x) Vector with differences

x[i] - x[i - 1]

In analogy to numeric vectors character vectors are also possible. However, the text
strings need to be wrapped in quote symbols. Consider the following code:

> myNames <- "Peter"
> myNames <- c(myNames, "John", "Lucy")
> myNames
[1] "Peter" "John" "Lucy"

In the first line, Peter’s name is stored to vector myNames. Then the idea has come up
to add John’s and Lucy’s name to the vector myNames, however, without overwriting
the current contents which is Peter’s name. That is why the vector myNames itself is
included on the right hand side of the assignment.

Finally it can be useful to create simple vectors by using the seq and rep func-
tions. The command

> seq(1, 17, by = 2)
[1] 1 3 5 7 9 11 13 15 17
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creates a sequence of odd numbers between 1 and 17. The optional parameter by
specifies the step width.

We can now assign the sequence of odd numbers to a variable, ad, and use the
function rev to reverse the order of elements (lines 1-2). The same effect can be
achieved by reversing the index using the command ad[length(ad) : 1] (line 4):

1 > ad <- seq(1, 17, by = 2)
2 > rev(ad)
3 [1] 17 15 13 11 9 7 5 3 1
4 > ad[length(ad) : 1]
5 [1] 17 15 13 11 9 7 5 3 1

The command rep(7, 7) on the other hand repeats the value ’7’ 7 times:

> rep(7, 7)
[1] 7 7 7 7 7 7 7

The sample function sample can be used to return a random permutation of a vector.
Consider a vector x of integers from 1 to 10.

> x <- 1 : 10
>
> sample(x)
[1] 4 3 6 5 10 2 9 7 1 8

Incidentally the command sample(10) has exactly the same effect. Using the size
argument we can now draw a subsample of vector x.

> sample(x, size = 4)
[1] 10 9 1 7

Finally, the replace argument allows us to perform sampling with replacement, i.e.
each number of vector x can be drawn more than once. In that case the sample size
can also exceed the length of the vector.

> sample(x, size = 20, replace = T)
[1] 2 2 4 2 8 3 4 4 4 8 10 10 5 1 3 3 2 6 4 1

Help and explanations relating to any function or operator, e.g. log can be called on
by typing help(log) or ?log. For code examples only you can type example(log).
There is also a growing community of R users throughout the world and carefully
passing your R related question on to an internet search machine may give you quick
and useful answers.

Ctrl-C or Esc stops any processing, which currently is underway. Incidentally,
earlier commands can be retrieved in the console by pressing the arrow keys (up and
down) of the keyboard. The reasons for any error message can be analysed with the
function traceback() and to quit your R session type

> q()

After running q() R enquires whether it should save the workspace image, i.e. the
data and the sequence of commands of the current session. In the author’s experience
this is usually not necessary as every session can easily and quickly be reconstructed
from the script used so that it suffices to save the script file.



C.1 Introduction 159

C.1.2 Data frames

Consider two tree variables of interest, stem diameter, dbh and total tree height, h.
The corresponding data columns can be represented by and stored in two separate
columns or vectors, dbh and h.

1 > dbh <- c(33.5, 40.5, 39.0, 54.0, 38.8, 32.4, 29.7, 31.0,
2 + 55.5, 26.1)
3 > h <- c(28.9, 30.0, 26.6, 30.7, 27.0, 26.2, 27.8, 25.5, 31.7,
4 + 24.8)
5 > myData <- data.frame(dbh, h)
6 > str(myData)
7 ’data.frame’: 10 obs. of 2 variables:
8 $ dbh: num 33.5 40.5 39 54 38.8 32.4 29.7 31 55.5 26.1
9 $ h : num 28.9 30 26.6 30.7 27 26.2 27.8 25.5 31.7 24.8

In lines 1-4, 10 stem diameter and corresponding height values are assigned to the
vectors dbh and h. Note that for successful calculations both vectors should have the
same length. Also the order of dbh and h values matters so that corresponding values
should occur at the same locations in the two vectors. As they form a common data
set, the vectors can be combined as two columns in a data frame entitled myData

(line 5). The command str(myData) is useful to check up on or to remind ourselves
of the structure of the data frame. For accessing individual columns you now have
to use the name of the data frame plus the column name separated by a $ sign, e.g.
myData$h.

A data frame is a two-dimensional structure for storing vectors. Each column
corresponds to a variable and each row to an observation.

A common task in working with data sets is to sort the data in an ascending or
descending way. This can be accomplished using the following code, in which we
sort descendingly according to stem diameter.

> (myData.s <- myData[order(myData$dbh, decreasing = TRUE), ])

dbh h
9 55.5 31.7
4 54.0 30.7
2 40.5 30.0
3 39.0 26.6
5 38.8 27.0
1 33.5 28.9
6 32.4 26.2
8 31.0 25.5
7 29.7 27.8
10 26.1 24.8

The comma in the command ensures that all columns are included in the sorting
process. Again the round brackets prompt R to print the data in myData.s on screen.

For checking up on your computations you can list a subset of the total data frame
by using indices, e.g. the code

> myData.s[1 : 5, ]
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dbh h
9 55.5 31.7
4 54.0 30.7
2 40.5 30.0
3 39.0 26.6
5 38.8 27.0

gives you the first five rows of the data set myData. Round brackets in this case are
not necessary as the subsetting induced by the commands in the square brackets is
similar to the application of a function. The comma at the end of the expression in
the squared brackets indicates that you wish to display all columns of the data set.
Alternatively use the commands myData.s[2] or myData.s["h"] to select the tree
height column only.

sapply() is one of many functions in R that have been designed to work with
vectors by using implicit loops (Dalgaard, 2008, p. 26), which – if programmed in
R – would otherwise consume a lot of computation time. sapply() allows us to
apply a function of our choice (including user-defined ones) simultaneously to all
columns of a data frame. In the listing below we calculate the arithmetic mean of
both data columns.

> sapply(myData, mean)
dbh h

38.05 27.92

Alternatively the commands apply(myData, 1, mean) and apply(myData, 2,

mean) calculate the row and column means, respectively.
A new column or vector within a data frame can simply be created by providing

a new vector name and assigning values to it. We can, for example, calculate the
h/d ratio (see Chap. 2.1) in the following way:

> myData$hd <- 100
*

myData$h / myData$dbh
> myData[1 : 3, ]

dbh h hd
1 33.5 28.9 86.26866
2 40.5 30.0 74.07407
3 39.0 26.6 68.20513

A selection of data can be achieved by using a relational expression, e.g.

> myData[myData$dbh > 35, ]

dbh h hd
2 40.5 30.0 74.07407
3 39.0 26.6 68.20513
4 54.0 30.7 56.85185
5 38.8 27.0 69.58763
9 55.5 31.7 57.11712

As a result all data have been selected where dbh > 35 cm. It is also possible to use
more than one condition linked with a logical “and” (&):

> myData[myData$dbh > 30 & myData$hd > 80, ]
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dbh h hd
1 33.5 28.9 86.26866
6 32.4 26.2 80.86420
8 31.0 25.5 82.25806

A logical “or” is expressed with the symbol |.

C.1.3 Input and output

Often the data we wish to process are too many to be inputted in R or are already
available in digital format produced by another program. For the purpose of this
book, it can be recommended to edit and to maintain data externally in MS Excel
or in similar spreadsheet or database programs. The data to be analysed in R should
include a header line and can then be conveniently converted to ASCII format. Every
header should consist of a single word with continuous letters. Numeric and string
values should not be mixed in a single column. If all data cells have valid entries it
is easiest to convert the data to text tabs delimited (*.txt) in MS Excel. If
some data cells are empty the conversion option text comma delimited (*.csv)

should be preferred.
It is useful to start every new R script with the command rm(list = ls()),

which removes all pre-existing objects and data. In line 2f. of the following code
snippet the ASCII data saved in file Data1.txt are read by R and assigned to the
data frame myData.

1 > rm(list = ls())
2 > myData <- read.table("/Cyhoeddi/SilvicultureBook/Data1.txt",
3 + header = T)
4 # myData <- read.csv("/Cyhoeddi/SilvicultureBook/Data1.csv",

5 # header=T)

6 > dim(myData)
7 [1] 56 6
8 > names(myData)
9 [1] "treeno" "species" "x" "y" "dbh" "h"

In lines 4f. the alternative code for comma delimited data is given. header = T in-
dicates that the first row of the data file contains headers. The use of forward slashes
is common practice in R irrespective of the operating system. The directory names
are case sensitive and ideally should not contain blank spaces. When working in MS
Windows a drive name, e.g. C: (without backslash) needs to be added immediately
following the first quotation mark. It is also possible to substitute each forward slash
by a double backslash (\\).

Ideally “.” is always set as standard decimal separator in MS Excel, however, if
commas were used the argument dec = "," separated by a comma in lines 3 or 5
will perform an automatic conversion.

The commands dim and names produce information on the dimensions of the
new data frame and give the headers which simultaneously serve as vector names.
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Missing data, which can originate from unmeasured tree characteristics, are rep-
resented in R by the value NA and any operations on NA also yield NA as a result
(Dalgaard, 2008, p. 14). In that case a special command can limit calculations to
valid observations, i.e. missing values are then removed.

> mean(myData$dbh, na.rm = T)

T is short for TRUE. In R, it is possible to use both T or TRUE and F or FALSE, respec-
tively. Alternatively records with no entry, i.e. with the value NA, can be removed
beforehand using the following command.

> myData <- myData[!is.na(myData$dbh), ]

After modifying the data frame the data can be saved to ASCII files using one of the
following commands. Naturally it is recommended to use a file name different from
that of the input file to avoid overwriting.

> write.table(myData, file = "/Cyhoeddi/SilvicultureBook/
+ Data1new.txt")
> write.csv(myData, file = "/Cyhoeddi/SilvicultureBook/
+ Data1new.csv")

Subsets can be created in two different ways, by using (1) conditional statements
in square brackets and (2) the subset function. In the following example lodge-
pole pine trees (Pinus contorta DOUGL. ex LOUD.) are selected for species specific
analysis. In this context, the length function serves as a simple check up that both
operations yield the same results. The comma towards the end of the first line is
again responsible for selecting all data columns.

> myData.LP1 <- myData[myData$species == 3, ]
> length(myData.LP1$treeno)
[1] 18
> myData.LP2 <- subset(myData, species == 3)
> length(myData.LP2$treeno)
[1] 18

Similar to sapply, tapply allows the use of an implicit-loop command for ex-
ploring the number of trees per species. Again implicit loops are shortcuts to what
otherwise would need to be programmed as long-winded loops.

> tapply(myData$treeno, myData$species, length)
3 12
18 38

In this example, there are 18 lodgepole pine (Pinus contorta DOUGL. ex LOUD., coded
as 3) and 38 Sitka spruce (Picea sitchensis (BONG.) CARR., coded as 12) trees in the
data frame.

As we have already seen in the case of subsetting the same results can be ob-
tained in R from more than one set of commands. In this case, the command
table(myData$species) for example gives the same information.
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C.1.4 Graphs and regressions

Graphs are essential elements of any data analysis. They visualise important re-
lationships and help to spot mistakes. Graphs are a particular strength of R and
convince with high quality that is only limited by the user’s knowledge of how to
program and to fine-tune them.

Following on with the data frame introduced in the last section, the diameter his-
togram is presented first. A histogram is a chart for displaying grouped continuous
data, in which the width of each bar is proportional to the class interval and the area
of each bar is proportional to the frequency it represents (Porkress, 2004, p. 118).
All graphic commands are wrapped in the statements pdf() and dev.off(). This is
a way to direct the graphical output to a pdf file for use in other computer programs
such as LATEX, MS PowerPoint or Apple Keynote. Other file formats are of course
also possible, e.g. png("*.png"). If a screen output is intended lines 1 and 9 can
be removed or disenabled with the # sign.

1 pdf(file = "/Cyhoeddi/SilvicultureBook/histExample.pdf")
2 > hist1 <- hist(myData$dbh, breaks = seq(8, 60, by = 4),
3 + include.lowest = T, right = F, plot = FALSE)
4 > hist1$counts <- hist1$counts / length(myData$dbh)
5 > par(mar = c(2, 4, 1, 2))
6 > plot(hist1, las = 1, cex.axis = 1.7, lwd = 2,
7 + ylim = c(0, 0.20), main = "", xlab = "", ylab = "")
8 > box(lwd = 2)
9 > dev.off()

10 null device
11 1

In principle the command hist(myData$dbh) is sufficient to produce a basic his-
togram. In the above code the histogram is, however, assigned to the variable hist1
for further manipulation. The parameter breaks = seq(8, 60, by = 4) defines
the diameter classes. The first two values give the minimum and maximum classes
and can be established from the diameter range (range(myData$dbh)). The argu-
ment by = 4 defines 4-cm diameter classes and the parameters include.lowest =

T and right = F determine the forestry specific boundaries of diameter classes, see
Chap. 2.2.

In line 4, the absolute frequencies in each diameter class are transformed to rel-
ative ones for better comparison with other forest stands. This is accomplished by
dividing the absolute frequencies in each class by the total number of trees.

The plot margins are defined in line 5. From left to right the numbers represent
the bottom, left, top, right margins of the plot and are interpreted in units of
character widths (Jones et al., 2009).

Finally the plot command in line 6f. commits R to produce the actual histogram
using the modified histogram variable hist1. The argument las = 1 organises the
values on the ordinate in a horizontal way which is good for presentations and lec-
tures. The arguments cex.axis and lwd = 2 (= line width) defines the size of the
axes labels and their width. ylim determines the extent of the abscissa, a similar
command xlim also exists but is not necessary here. The histogram title and the
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axes labels can be determined with the arguments main, xlab and ylab, however,
I personally prefer adding them with the overpic package of LATEX for more flexi-
bility and a better representation of mathematical symbols. Many more parameters
exist to fine-tune histograms and the online help in R provides options and examples.

As a last step, a box with line width 2 has been added to the graph. Fig. C.1
shows the result.
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Fig. C.1 Example of a diameter histogram based on a mixed Sitka spruce-lodgepole pine forest
stand at Cefn Du (Clocaenog Forest, North Wales).

Bar charts are simple graphs that display single sets of numbers. In contrast to his-
tograms the bars correspond to each number in the vector (Porkress, 2004).

To produce a bar chart of stem diameters a formula needs to be applied first to
assign each stem diameter to a diameter class (line 1-2). Then the frequencies in each
diameter class are established with the tapply function in line 3. Unfortunately, the
data now need to be re-formatted several times to fit the requirements of the bar plot
function (lines 5-8). In line 9 and 10, relative frequencies are calculated by dividing
the absolute frequencies by the number of observations. The class names are defined
in line 11 as bar plot labels. Finally the bar plots are drawn in lines 12-17. Fig. C.2
shows the result.

1 > myData$dbhcls <- 4
*

(round((myData$dbh + 0.00000001) / 4) -
2 + 1) + 4
3 > dbhDistribution <- tapply(myData$dbh, myData$dbhcls, length)
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4 > xdbhDistribution <- data.frame(cbind(dbhDistribution))
5 > xdbhDistribution$numbers <- xdbhDistribution$dbhDistribution
6 > xdbhDistribution$dbhcls <- as.numeric(row.names(
7 + xdbhDistribution))
8 > xdbhDistribution <- xdbhDistribution[c("dbhcls", "numbers")]
9 > tdbhDistribution <- xdbhDistribution$numbers /

10 + length(myData$dbh)
11 > names <- xdbhDistribution$dbhcls
12 > pdf(file = "/Cyhoeddi/SilvicultureBook/barplotExample.pdf")
13 > par(mar = c(3, 4, 3, 4))
14 > barplot(tdbhDistribution, beside = TRUE, ylab = "",
15 + main = "", las = 1, axes = TRUE, names.arg = names,
16 + cex.names = 1.7, cex.axis = 1.7, lwd = 2)
17 > dev.off()
18 null device
19 1
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Fig. C.2 Example of a diameter bar chart based on a mixed Sitka spruce-lodgepole pine forest
stand at Cefn Du (Clocaenog Forest, North Wales).

Another important graph in data analysis is the scatterplot. We will apply this type
of graph to visualise the relationship between stem diameters and total height in tree
populations based on the same data frame as before.

1 > pdf(file = "Cyhoeddi/SilvicultureBook/scatterExample.pdf")
2 > par(mar = c(2, 3, 0.5, 0.5))
3 > plot(myData$dbh, myData$h, xlim = c(0, 65), ylim = c(0, 35),
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4 + pch = 16, xlab = "", ylab = "", axes = FALSE)
5 > axis(1, lwd = 2, cex.axis = 1.8)
6 > axis(2, las = 1, lwd = 2, cex.axis = 1.8)
7 > box(lwd = 2)
8 > dev.off()
9 null device

10 1

Many parameters and arguments in the above code are already known from the
histogram example. A scatterplot is produced using the plot function. First the
abscissa values (stem diameter) are specified followed by the ordinate values (total
tree height). The command axes = FALSE suppresses the drawing of the axes at this
stage. This is performed separately by the following two axes commands. pch = 16

defines the plotting characters as small filled circles. Other definitions are, of course,
possible, pch = 17 for example yields filled triangles.

It is now possible to define a trend curve and to display this curve in the scat-
terplot. This is a common application in data analysis and modelling. For this pur-
pose we have to use nonlinear regression applied to a height-diameter model (see
Chap.2.2). This can be achieved with the following code.

> nls.Petterson <- nls(h ~ 1.3 + (dbh/(a + b
*

dbh))^3,
+ data = myData, start = list(a = 0.5, b = 3.8), trace = T)
28201.54 : 0.5 3.8
20851.01 : 33.8030885 -0.3563551
20756.15 : 33.6571018 -0.3536527
20567.28 : 33.3663958 -0.3482686
20192.88 : 32.790018 -0.337583
19456.83 : 31.657130 -0.316537
18031.2 : 29.4687529 -0.2757102
15335.76 : 25.3866524 -0.1988602
10422.76 : 18.3055084 -0.0627713
2790.814 : 8.035270 0.145125
838.3544 : 0.9757181 0.3110218
254.7894 : 1.8406893 0.2965715
238.5269 : 2.1459689 0.2887622
238.468 : 2.1665622 0.2882068
238.468 : 2.1671261 0.2881906
238.468 : 2.1671405 0.2881902
> summary(nls.Petterson)

Formula: h ~ 1.3 + (dbh/(a + b * dbh))^3

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 2.167141 0.184550 11.74 <2e-16 ***
b 0.288190 0.005458 52.80 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.101 on 54 degrees of freedom

Number of iterations to convergence: 15
Achieved convergence tolerance: 2.408e-07
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In the first two lines, the model equation is specified followed by the data defini-
tion and the list of starting model parameters. trace = T confirms our intention to
follow the individual iterations of the regression, which we can see in the following
lines. Finally, the results are presented. Dalgaard (2008, p. 275ff.) provides a whole
chapter with useful information on nonlinear regression in R.

The model parameters shown in the paragraph with the header “Parameters:”
can now be used to superimpose the trend curve on the scatterplot. For this purpose
we employ the curve function. This function allows the direct drawing of function
graphs from equations.

> curve(1.3 + (x/(summary(nls.Petterson)$coefficients[1] +
+ summary(nls.Petterson)$coefficients[2]

*

x))^3,
+ from = min(myData$dbh), to = max(myData$dbh),
+ lwd = 4, lty = 1, col = "grey", add = TRUE)

summary(nls.Petterson)$coefficients[1] gives the first and summary(nls.P
etterson)$coefficients[2] the second regression coefficient. The rest of the
code is quite self-explanatory. The parameter add = TRUE ensures that the scatter-
plot is not overwritten and lty = 1 defines the line type, which in our case should
be a simple continuous line. This code needs to be included before the command
dev.off() after the regression. The final results can be seen in Fig. C.3.
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Fig. C.3 Example of a scatterplot with a superimposed non-linear trend curve.
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In some cases, often when more than two model parameters are involved, the
nls routine stops processing or only produces results after several new attempts
of devising new starting parameters, which can be awkward. In that case it can be
recommended to make use of the optim function as outlined in Jones et al. (2009).

As part of this alternative to nls first a loss function needs to be defined, which
is in lines 7-11 in the below code. In line 8, the Petterson function of lines 14-17 is
called. The deviation between observed and estimated total tree heights is calculated
in line 9 and returned to optim in line 10. In line 19, a vector with the starting values
is defined.

1 > par(mar = c(2, 3, 0.5, 0.5))
2 > plot(myData$dbh, myData$h, xlim = c(0, 65), ylim = c(0, 35),
3 + pch = 16, xlab = "", ylab = "", axes = FALSE)
4 > axis(1, lwd = 2, cex.axis = 1.8)
5 > axis(2, las = 1, lwd = 2, cex.axis = 1.8)
6 >
7 > loss.L2 <- function(abdn, xdata) {
8 + yh <- xh(abdn[1 : 2], xdata)
9 + xdev <- xdata$h - yh

10 + return(sum(xdev^2, na.rm = TRUE))
11 + }
12 >
13 > # Petterson

14 > xh <- function(abdn, xdata) {
15 + yh <- 1.3 + (xdata$dbh/(abdn[1] + abdn[2]

*

xdata$dbh))^3
16 + return(yh)
17 + }
18 >
19 > abdn0 <- c(0.5, 3.8)
20 > abdn.L2 <- optim(abdn0, loss.L2, xdata = myData,
21 + control = list(maxit = 30000, temp = 2000,
22 + trace = TRUE, REPORT = 500))
23 >
24 > abdn.L2$par
25 [1] 2.1679653 0.2881626
26 >
27 > curve(1.3 + (x/(abdn.L2$par[1] + abdn.L2$par[2]

*

x))^3,
28 + from = min(myData$dbh), to = max(myData$dbh), lwd = 1,
29 + lty = 1, col = "black", add = TRUE)
30 >
31 > axis(1, lwd = 2, cex.axis = 1.8)
32 > axis(2, las = 1, lwd = 2, cex.axis = 1.8)
33 > box(lwd = 2)

Finally optim is run in lines 20-22 and the model parameters are produced by the
command in line 24. The curve command in lines 27-29 adds the model curve to
the plot.

Another common application of scatterplots is a situation where the user needs to
draw curves which have been produced beforehand with other computer programs,
e.g. in MS Excel. An example is shown in the code below and in Fig. C.4. First, the
external data defining the curves to be drawn need to be loaded (lines 2-3). Then
the graphic functions and arguments are used that we already know from previous
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applications in this section. The main difference to usual scatterplots is that we now
specify the graphical parameter type = "l", which ensures that lines are drawn
rather than points. In this example, the plot() function draws the mark variogram
(Pommerening and Särkkä, 2013) as a solid curve.

1 > rm(list = ls())
2 > xfile <- read.table("Cyhoeddi/SilvicultureBook/
3 + Bialowieza.out", header = T)
4 > pdf(file = "Cyhoeddi/SilvicultureBook/BialowiezaGa.pdf")
5 > par(mar = c(2, 3.5, 0.5, 0.5))
6 > plot(xfile$r, xfile$ga, xlab="", ylab="", type = "l",
7 + las = 1, ylim = c(0,350), axes = FALSE, lwd = 2)
8 > lines(xfile$r, xfile$gamin, type = "l", col = "black",
9 + lty = 3, lwd = 2)

10 > lines(xfile$r, xfile$gamax, type = "l", col = "black",
11 + lty = 3, lwd = 2)
12 > axis(1, lwd = 2, cex.axis = 1.7)
13 > axis(2, las = 1, lwd = 2, cex.axis = 1.7)
14 > box(lwd = 2)
15 > dev.off()
16 null device
17 1

Maximum and minimum variogram values from simulations are added as two ad-
ditional curves using the lines() function, which otherwise have the same effect
and graphical parameters as the plot() function. However, the graphical parame-
ters lty = 3 are used, specifying a dotted line type. The results can be seen in Fig.
C.4.
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Fig. C.4 Example of mark variogram curves, ĝ(r), produced from imported data in R. r is the
intertree distance.
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A box plot (or “box-and-whisker plot”) is an alternative to a histogram provid-
ing a visualisation of the main features of a data set (Braun and Murdoch, 2007, p.
36f.). The bold horizontal line marks the median and the upper and lower edges of
the box give the upper and lower quartiles. About 50% of the data lies within the
box, which defines the interquartile range (IQR). The dashed lines and end lines, the
whiskers, lead to the smallest/largest value that is no smaller/no larger than 1.5 IQR
below/above the lower/upper quartile. When data are drawn from the normal distri-
bution or other distributions with a similar shape, about 99% of the observations fall
between the whiskers. Outliers (observations that are very different from the rest of
the data) are plotted as separate points (Braun and Murdoch, 2007, p. 37). Box plots
are convenient for comparing distributions of data in two or more categories.

In the code example below, we compare the distributions of the dbh measure-
ments between the two species, lodgepole pine (Pinus contorta DOUGL. ex LOUD.)
and Sitka spruce (Picea sitchensis (BONG.) CARR.).

1 > my.labels <- c("LP", "SS")
2 > par(lab = c(length(my.labels), 5, 7), mar = c(2.5, 4, 0.5,
3 + 0.5))
4 > boxplot(dbh ~ species, data = myData, boxwex = 0.5, lwd = 2,
5 + axes = FALSE)
6 > axis(1, at = 1 : 2, labels = my.labels, lwd = 2,
7 + cex.axis = 1.8)
8 > axis(2, las = 1, lwd = 2, cex.axis = 1.8)
9 > box(lwd = 2)

Note that the abscissa labels are defined in line 1 and used in lines 2 and 6. boxwex
is a scaling factor, which can be used to make the boxes narrower when there are
only few groups. An additional argument horizontal = TRUE allows the drawing
of horizontal box plots, which is sometimes useful. Fig. C.5 shows the box plots
produced from the above R code. They show that both species have quite different
median diameters and diameter ranges. Sitka spruce (n = 38) has larger diameter
trees and a wider range of tree sizes than lodgepole pine (n = 18).

In R, it is also possible to visualise a mathematical function directly without
the need to compile a table of function values beforehand. This is very useful for
visualising functions that we would like to consider as trend curves or models. As an
example, we use here the Chapman-Richards growth function (Pienaar and Turnbull,
1973). In the following code, first the three function parameters are specified and
then the graph is produced using the curve command.

# Specify parameters of Chapman-Richards growth function

> A <- 35.204
> k <- 0.0235
> p <- 1.237
> # Draw the curve of the growth function

> par(mar = c(4.5, 4.5, 2, 0.5))
> curve(A

*

(1 - exp(-k
*

x))^p, from = 5, to = 120,
+ xlab = "Age [years]", ylab = "Top height [m]",
+ main = "SP (YC 14, ITh, 1-8m)", axes = FALSE, lwd = 2)
> axis(1, lwd = 2, cex.axis = 1.8)
> axis(2, las = 1, lwd = 2, cex.axis = 1.8)
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Fig. C.5 Example of a box plot comparing two tree species of the same forest stand in terms of
diameter distribution and the meaning of the box plot features.

> box(lwd = 2)

This example of top height development over age is taken from the British yield
table system (Hamilton and Christie, 1973), i.e. Scots pine (Pinus sylvestris L.),
yield class 14, intermediate thinning and 1⇥ 0.5 m initial spacing. The result is
given in Fig. C.6, this time using the original R axes labels.

As a summary the most important graph functions are listed in Table C.3. Graph
parameters can be found in the R online help. Incidentally several graphs can be
simultaneously displayed on screen or in a file using the graphical parameters
par(mfrow = c(1, 2)). In this case two graphs are shown in one row and two
columns.
Just for completeness let us also consider the case of a simple linear regression. For
this purpose we will work with the following two vectors of stem diameters in cm
and the corresponding diameter increments also in cm:

> dbh <- c(42.4, 54.0, 32.2, 39.8, 26.1, 30.4, 39.9, 45.5,
+ 37.9, 31.7)
> id <- c(5.5, 7.2, 4.0, 5.1, 3.1, 3.8, 5.1, 6.0, 4.8, 4.0)

These are sample data from a Sitka spruce (Picea sitchensis (BONG.) CARR.) forest
stand at Clocaenog forest in North Wales. The cycle of repeated dbh measurements
that form the basis of the increment values is 5 years.
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Fig. C.6 Visualising the Chapman-Richards growth function.

Table C.3 Important graph functions.

Function Description

plot() Scatterplot (and more)
hist() Histogram
barplot() Barplot graph
boxplot() Boxplot graph
lorenz() Lorenz curve
pie() Pie chart

A simple linear regression between the initial stem diameters, dbh, i.e. the diam-
eters at the beginning of the increment period, and the diameter increment, id, as
independent variable can be performed with the following code.

1 > lm.inc <- lm(id ~ dbh)
2 > summary(lm.inc)
Call:
lm(formula = id ~ dbh)

Residuals:
Min 1Q Median 3Q Max

-0.046878 -0.025837 -0.009401 0.035255 0.057057

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.678790 0.062513 -10.86 4.57e-06 ***
dbh 0.145796 0.001612 90.46 2.49e-13 ***
---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.03984 on 8 degrees of freedom
Multiple R-squared: 0.999,Adjusted R-squared: 0.9989
F-statistic: 8183 on 1 and 8 DF, p-value: 2.489e-13

Line 1 gives the code of the linear regression and the following lines are the result
of the summary() command.

Incidentally, intercept (a), slope (b) parameters and coefficient of determination,
R2, can also be calculated “manually” in the following way:

> (b <- cov(dbh, id) / var(dbh))
[1] 0.145796
> (a <- mean(id) - b

*

mean(dbh))
[1] -0.6787903
> cor(dbh, id)^2
[1] 0.9990233

We can now use the regression results again to plot a trend line. Consider the fol-
lowing code.

1 par(mar = c(2, 2, 0.5, 0.8))
2 > plot(dbh, id, ylab = "", xlab = "", pch = 16, cex = 1.7,
3 + las = 1, cex.axis = 1.7, lwd = 2)
4 > lines(dbh, fitted(lm.inc), col = "black")
5 > box(lwd = 2)

The lines() command adds the actual regression line as shown in Fig. C.7. The
command abline(lm.inc, col = "black") produces a similar trend line.
For examining the normality of the residuals graphically we can for example em-
ploy the QQ plot (quantile quantile plot). It draws the sample quantiles against the
quantiles of a normal distribution, see Fig. C.8.

> qqnorm(lm.inc$residuals)
> qqline(lm.inc$residuals)

Without going into detail, the data points should ideally lie on a straight line. In our
case, there are only very few observations to make this a worthwhile exercise.
Incidentally, it sometimes makes sense to assume that a regression line passes
through the origin, (0, 0), i.e. the intercept of the regression line is zero. This
can be specified in the model formula by adding the term -1 (“minus intercept”)
on the right-hand side Dalgaard (2008, p. 198): id ~ dbh - 1. Again Dalgaard
(2008, p. 109ff.) has prepared a chapter on simple linear regression in R, which is
recommended for further reading.

C.1.5 Functions and flow control

min(), max() and sum() are functions that are part of the standard libraries of R.
The user has, of course, also the possibility to define his own function. To write
functions is a way to reduce complexity by writing only once certain elements of
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Fig. C.7 Example of a scatterplot with a superimposed linear trend curve.

code that are frequently used. Functions are self-contained units. They take inputs,
do calculations and produce outputs (Braun and Murdoch, 2007). As an example we
use the calculation of the quadratic mean diameter (see Chap. 2.2).

The syntax is very simple. The word function followed by the list of arguments
in round brackets, (), is assigned to the function name.

> calcQuadraticMean <- function(myVector) {
+ x <- sqrt(sum(myVector^2) / length(myVector))
+ return(x)
+ }

In a next step, the quadratic mean is calculated and assigned to the variable x.
The value of x is then finally returned to the calling instance with the statement
return(x). The whole function body is wrapped in curly braces, {}. The location
of the first, opening curly brace can be at the end of the first line or at the beginning
of the second, this is a matter of taste.

Prior to using the new function you need once to highlight the whole function
code and to execute the run command (Ctrl-R or Cmd-Enter). Possible errors in
the code will be identified by R at this stage. Afterwards you can apply your own
function in all possible contexts, e.g.

> calcQuadraticMean(myData$dbh)
[1] 34.7506
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Fig. C.8 Normal quantile plot of residuals.

Since the calculations in the function calcQuadraticMean are simple and consist
only of a single line, the function code can be simplified to

> calcQuadraticMean <- function(myVector)
+ return(sqrt(sum(myVector^2) / length(myVector)))

However, it is important that every user adopts a programming style that best
works for him. Above all any code has to be correct in the first place.

Structures of flow control are useful for repetitive tasks. Often such tasks can
be avoided by pre-defined functions and implicit loops in R. In case they are really
necessary for a given task a brief introduction is given here by continuing the work
with the data frame used in this section and the mean function. Applied to the data
set that we have imported earlier from an ASCII file the following code can be
employed.

> mean(myData$dbh)
[1] 33.34107

Since an R function is available there is no need for programming the calcula-
tion of arithmetic means from scratch. However, expressing the same calculation
by means of loops helps to understand how they work and how they can be imple-
mented. The following listing shows how the mean function can be simulated with
a for loop.
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1 > mean.xfor <- 0
2 > for (i in 1 : length(myData$dbh)) {
3 + mean.xfor <- mean.xfor + myData$dbh[i]
4 + }
5 > mean.xfor <- mean.xfor / length(myData$dbh)
6 > mean.xfor
7 [1] 33.34107

In line 1, the variable collecting the summed stem diameter values is set to zero
for initialisation. The loop statement defining the beginning and the end of the loop
is given in line 2. In line 3, all stem diameter values are summed up. Note that
individual dbh values are accessed by putting the running variable i in square brack-
ets. The loop is executed exactly length(myData$dbh) times. Finally the sum is
divided by the number of observations.

Since only one line of code is included in the for loop the above listing can be
simplified by omitting the curly braces. Also the whole code can be substituted by
the simpler statement sum(myData$dbh) / length(myData$dbh).

The arithmetic mean can also be implemented with a while loop. A little more
effort is required as the running variable i needs to be initialised (line 2) and incre-
mented (line 5). The while loop is particularly useful where the number of repeti-
tions is difficult to determine beforehand.

1 > mean.xwhile <- 0
2 > i <- 1
3 > while (i < length(myData$dbh) + 1) {
4 + mean.xwhile <- mean.xwhile + myData$dbh[i]
5 + i <- i + 1
6 + }
7 > mean.xwhile <- mean.xwhile / (i - 1)
8 > mean.xwhile
9 [1] 33.34107

Another option in R is the repeat loop, where the abort condition is at the bottom
of the loop introduced by an if statement.

1 > mean.xrepeat <- 0
2 > i <- 1
3 > repeat {
4 + mean.xrepeat <- mean.xrepeat + myData$dbh[i]
5 + i <- i + 1
6 + if(i == length(myData$dbh) + 1)
7 + break

8 + }
9 > mean.xrepeat <- mean.xrepeat / (i - 1)

10 > mean.xrepeat
11 [1] 33.34107

The repeat loop is not frequently used. However, the if statement is quite com-
mon, mostly in connection with loops and should also include an else statement
for alternative pathways in programs.

Many loops can be and should be avoided in R as they require a lot of compu-
tation time. In the following code snippet one of three height bands is assigned to
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each tree depending on the maximum tree height in a forest stand maxh and the total
height myData$ht of each tree.

> myData$band <- 1
> myData$band[myData$ht > max(myData$ht)

*

0.8] <- 3
> myData$band[myData$ht > max(myData$ht)

*

0.5 &

+ myData$ht <= max(myData$ht)
*

0.8] <- 2

Instead of using a for loop and if statements it is possible here to exploit the
strengths of R. In this case, a default value of 1 is assigned to all trees and then
the two other values are assigned using relational statements in square brackets.
This strategy makes use of the vector philosophy of R and the relational statements
replace the traditional if statements.

C.1.6 Extending R with C++

In some situations, loops are unavoidable and in that case it is recommended to
program them externally in C++ or Fortran. R can then link to this compiled or
uncompiled code. This is a kind of ’outsourcing’, i.e. the strengths of both R and
higher programming languages are combined. Complex loops run much faster in
C++ or Fortran and considerable time savings can be achieved with this strategy.

A simple way of linking C++ to R is using for example the Rcpp package (Eddel-
buettel and Fraņcois, 2011; Eddelbuettel, 2013). This package requires R versions >
2.15.2. Using the R Package Installer the package Rcpp first needs to be installed in
R. When working with Mac OS Xcode needs to be installed from the Apple Devel-
oper site (https://developer.apple.com/xcode/). On MS Windows you need
to download and install Rtools (http://cran.r-project.org/bin/windows
/Rtools/). Problems, however, can occur in MS Windows 7/8. You need to make
sure that the file path leading to R does not contain empty space, e.g. C:\Program
Files\ ....

To illustrate the use of combined C++ and R code we continue with the theoreti-
cal example of the previous section. In a higher programming language, calculating
an arithmetic mean usually involves using a loop. Therefore we program this part
in C++ and the corresponding code is given below and saved as meanVector.cpp in
ASCII format.

1 #include <Rcpp.h>
2

3 using namespace Rcpp;
4

5 // [[Rcpp::export]]
6 double meanVector(NumericVector a) {
7

8 int n = a.size();
9 double xsum = 0;

10

11 for (int i = 0; i < n; i++)
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12 xsum += a[i];
13

14 return xsum / n;
15 }

In lines 1 and 3 reference to the Rcpp package is made. The code in line 5 is nec-
essary in order to be able to access the function meanVector from within R. The
algorithmic structure is essentially the same that we already know from the previ-
ous section, only the programming language and the syntax that comes with it is
different. Also the Rcpp package provides a number of variable types that otherwise
do not exist in C++, e.g. NumericVector in line 6. These additional types allow a
smoother cooperation with R.

The C++ function meanVector is now ready for use in R. In line 1 of the code
below all pre-existing R objects are deleted from memory. Then the Rcpp library
is loaded in line 3. The code in line 5 is crucial, as the C++ code is loaded and
compiled “on the fly”. This may take a few seconds. Potential C++ programming
errors can now be viewed in the R console.

1 > rm(list = ls())
2 >
3 > library(Rcpp)
4 >
5 > sourceCpp("/Users/arnepommerening/Dropbox/Rcpp/
6 + meanVector.cpp")
7 > v <- c(1.5, 2.9, 3.2, 4.1, 5.5)
8 > mean(v)
9 [1] 3.44

10 > meanVector(v)
11 [1] 3.44

If the compilation was successful it is now possible to use the C++ function
meanVector from within R. For this purpose we first construct a vector v in line
7. Then we use the R function mean to compute the arithmetic mean of the vector
values. In a final step, the self-made function meanVector is applied to calculate the
same mean of vector values in line 10 and the results in lines 9 and 11 coincide.

In analogy to this simple example more complex (simulation) code can be pro-
grammed in C++ and afterwards called from within R. It is for example possible
to implement a whole individual tree model in C++/R. For this purpose all detailed
core model functions are implemented in C++ and then called in R where the simu-
lation results are then statistically analysed and visualised in graphs.

For details of the C and C++ languages please refer to the books and manuals
on that language, which exist in great abundance. Also note that the syntax of Java
and C are quite similar so that code can easily and quickly be modified for use in
Rcpp/R.


